摘要
为了提高图像超分辨率重构效果,在保留结构化信息的同时弥补高、低分辨率图像之间的高频信息损失,本文结合深度学习方法,提出了一种基于改进超分辨率卷积神经网络和字典学习的图像超分辨率重构方法.首先使用卷积神经网络所学习到的结构化的图像信息训练一个端到端的图像超分辨率重构模型,再采用字典学习模型对图像残差部分的高频信息进行补偿,从而获得具有更好视觉效果和峰值信噪比的高分辨率图像.实验结果表明,本文算法在主观评价上比其他代表性算法更加清晰并且较好的恢复了高频信息,提高了峰值信噪比值.
In order to improve the image super-resolution reconstruction effect,while preserving the structured information while making up the high-frequency information loss between high and low resolution images,this paper proposes an image super-resolution reconstruction method based on improved SRCNN and dictionary learning.First,an end-to-end image super-resolution reconstruction model is trained using the structured image information learned by the convolution neural network.And then use the dictionary learning model to compensate for the high frequency information of the image residual part,obtain a high resolution image with better visual effect and peak signal to noise ratio (PSNR).The experimental results show that the proposed algorithm is more clear and better in the subjective evaluation than other representative algorithms,and the PSNR value is higher.
作者
张海涛
赵燚
ZHANG Hai-tao;ZHAO Yi(College of Software Liaoning Technical University,Huludao 125105,China)
出处
《小型微型计算机系统》
CSCD
北大核心
2018年第9期2090-2097,共8页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(61172144)资助
关键词
图像超分辨率重构
深度学习
卷积神经网络
字典学习
image super-resolution reconstruction
deep learning
convolution neural network
dictionary learning