期刊文献+

NQO1 dependent non-canonical necroptosis mediated by ROS and RIP1/RIP3 in parallel in glioma cancer cells 被引量:3

NQO1 dependent non-canonical necroptosis mediated by ROS and RIP1/RIP3 in parallel in glioma cancer cells
下载PDF
导出
摘要 OBJECTIVE Glioblastomas(GBM) are the most malignant brain tumors in humans and have a very poor prognosis.New therapeutics are urgently needed.Here,we reported 2-methoxy-6-acetyl-7-methyljuglone(MAM)-induced cell death in U87 and U251 glioma cancer cells.METHODS Cells were cultured and treated with MAM,the cell viability was determined by MTT assay and LDH assay.Intracellular reactive oxygen species(ROS) generation was observed by DCF fluorescence.The protein expression was determined by Western blotting.RESULTS MAM induced glioma cancer cell death without caspase activation.The cell death induced by MAM was attenuated by the pharmacological or genetic blockage of necroptosis signaling,including RIP1 inhibitor necrostatin-1 s(Nec-1 s) and siRNA-mediated gene silencing of RIP1 and RIP3,but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1 H-Indol-3-yl)-3-pentylamino-maleimide(IM54).MAM treated U87 and U251 glioma cancer cells induced RIP1/RIP3 complex formation,ROS level increased,ATP concentration decreased and loss of plasma membrane integrity,further confirmed this process was necroptosis.The essential role of ROS was confirmed by the protective effect of ROS scavenger NAC.Interestingly,MAM induced necroptosis both triggered by RIP1/RIP3 complex and ROS generation.Moreover,MAM induced necroptosis through cytosolic calcium(Ca2 +) accumulation and sustained c-Jun N-terminal kinase(JNK) activation.Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate cell death.Further,we found there exists a feedback loop between RIP1 and JNK activation.Finally,MAM induced necroptosis was inhibited by dicoumarol(a NQO1 inhibitor).Dicoumarol exposed glioma cancer cells were resistant to RIP1/RIP3 complex formation and ROS generation.MAM induced necroptosis was independent of MLKL.CONCLUSION MAM induced non-canonical necroptosis through the NQO1-dependent ROS and RIP1/RIP3 pathway.This study also provided new insights into the molecular regulation of necroptosis in human glioma cancer cells and a promising approach for GBM treatment. OBJECTIVE Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutics are urgently needed. Here, we reported 2- methoxy- 6- acetyl-7-methyljuglone (MAM)-induced cell death in U87 and U251 glioma cancer cells. METHODS Cells were cultured and treated with MAM, the cell viability was determined by M-IT assay and LDH assay. Intracellular reactive oxygen species (ROS) generation was observed by DCF fluorescence. The protein expression was determined by Western blotting. RESULTS MAM induced glioma cancer cell death without caspase activation. The cell death induced by MAM was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-ls (Nec-ls) and siRNA- mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleirnide (IM54). MAM treated U87 and U251 glioma cancer cells induced RIP1/RIP3 complex formation, ROS level increased, ATP concentration decreased and loss of plasma membrane integrity, further confirmed this process was necroptosis. The essential role of ROS was confirmed by the protective effect of ROS scavenger NAC. Interestingly, MAM induced necroptosis both triggered by RIP1/RIP3 complex and ROS generation. Moreover, MAM induced necroptosis through cytosolic calcium (Ca2+) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate cell death. Further, we found there exists a feedback loop between RIP1 and JNK activation. Finally, MAM induced necroptosis was inhibited by dicoumarol (a NQO1 inhibitor). Dicoumarol exposed glioma cancer cells were resistant to RIP1/RIP3 complex formation and ROS generation. MAM induced necroptosis was independent of MLKL. CONCLUSION MAM induced non-canonical necroptosis through the NQOl-dependent ROS and RIP1/RIP3 pathway. This study also provided new insights into the molecular regulation of necroptosis in human glioma cancer cells and a promising approach for GBM treatment.
出处 《中国药理学与毒理学杂志》 CAS CSCD 北大核心 2018年第4期326-327,共2页 Chinese Journal of Pharmacology and Toxicology
基金 supported by Science and Technology Development Fund of Macao Special Administrative Region (078/2016/A2) and Research Fund of University of Macao (MYRG2016-00043-1CMS-QRCM)
关键词 脑肿瘤 药物治疗 治疗方法 临床分析 MAM glioblastomas non-canonical necroptosis NQ01
  • 相关文献

同被引文献33

引证文献3

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部