期刊文献+

星载可卷金属面天线卷曲的特性研究与仿真

The coiling study and simulation of a spaceborne coiled metal antenna
下载PDF
导出
摘要 针对金属天线阵面筒形卷曲的非线性问题,基于薄板的大挠度弯曲理论推导了卷曲薄板的应力、应变分布的理论计算公式。利用ABAQUS有限元方法静态仿真薄板的卷曲变形,比较沿卷曲薄板轴向与周向的应力、应变分布规律。分析了卷曲变形的特点,验证了理论公式的准确性,并将理论公式的应用范围推广到变曲率的卷曲问题,定性讨论了边界条件对应力、应变分布的影响。最后,用ABAQUS显式方法动态分析薄板收卷2.5周并展开的准静态过程,得到应力、应变的分布与变化特征。本文可为金属面可卷天线的设计提供支持与参考。 For the nonlinear problem of a cylindrical coiled metal antenna, theoretical formulas are derived to calculate the stress and strain distribution based on the large deflection bending theory. Static simulations for the coiling of the thin plate are carried out on ABAQUS platform to verify the theoretical formulas by analyzing the stress and strain distribution along the axis and circumference. Additionally, the results of static simulation indicate that the theoretical formulas could be applied to coiling problems with non-constant curvature. Influence of boundary conditions is discussed qualitatively. Finally, using the explicit method of ABAQUS, the distribution and variation characteristics of stress and strain are obtained by the simulation of a quasi-static process, where the thin plate is coiled 2.5 circles and then deployed. The theoretical study and simulation method are available to the design of the coiled metal antenna.
出处 《应用力学学报》 CAS CSCD 北大核心 2018年第4期776-782,共7页 Chinese Journal of Applied Mechanics
关键词 金属天线面 筒形卷曲 理论公式 准静态 非线性仿真 metal antenna cylindrical coiling theoretical formula quasi-static nonlinear simulation
  • 相关文献

参考文献2

二级参考文献20

  • 1关富玲,侯国勇,赵孟良.构架式可展开天线结构设计的程序实现[J].工程设计学报,2006,13(2):108-113. 被引量:13
  • 2马兴瑞,于登云,孙京,胡成威.空间飞行器展开与驱动机构研究进展[J].宇航学报,2006,27(6):1123-1131. 被引量:60
  • 3卫剑征,苗常青,杜星文.充气太阳能帆板展开动力学数值模拟预报[J].宇航学报,2007,28(2):322-326. 被引量:17
  • 4ellegfino S. Large retractable appendages in spacecraft [ J ]. ournal of Spacecraft and Rockets, 1995, 32(6) : 1006 -1014.
  • 5Hazehon C S, Gall K R, Abrahamson E R, et al. Development of a prototype elastic memory composite STEM for large space structures[ C ]. The 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, USA, April 7 - 10, 2003.
  • 6Schmidt T, Seifart K, Burger F, et al. In orbit bonding ( lOB ) of long deployable structures [ C ]. The lOth European Space Mechanisms and Tribology Symposium, Paris, France, Sept. 24-26, 2003.
  • 7Higuchi K, Watanabe K, Watanabe A, et al. Design and evaluation of an ultra-light extendible mast as an inflatable structure[ C]. The 47th AIAA/ASMWASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Newl:oJ, USA, May 1 -4, 2006.
  • 8Rehnmark F, Pryor M, Holmes B, et al. Development of a deployable nonmetallic boom for reconfigursble systems of small spacecraft [ C ]. The 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, USA, April 23 - 26, 2007.
  • 9Seffen K A, Pellegrino S. Deployment dynamics of tape springs [ J ]. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 1999, 455 (1983) : 1003 -1048.
  • 10Salama M, Kuo C P, Lou M. Simulation of deployment dynamics of inflatable structures[J]. AIAA Journal, 2000, 38( 12): 2277 - 2283.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部