期刊文献+

基于潜在因子模型的时间序列语义信息挖掘及匹配方法研究 被引量:5

A Personalization Recommendation Method with Temporal Context
原文传递
导出
摘要 【目的/意义】当前全球信息化时代下信息过载问题日趋严峻,在深度挖掘信息的基础上,结合用户行为特征进行智能匹配显得尤为重要。【方法/过程】本文在基于潜在因子模型的个性化推荐算法的基础上,构建了结合时间序列的语义信息挖掘及匹配模型。通过引入用户历史行为的时间序列语义信息,提高已有模型预测用户偏好的准确性,结合因子分解机的思想实现对扩展模型的构建,并通过movielens数据集对该方法的有效性进行验证。【结果/结论】实验结果表明,新模型能够有效提高已有推荐模型预测用户偏好的准确性,从而实现了良好的数据挖掘及匹配效果。 【Purpose/significance】Personalization recommendation can effectively solve the negative influence of information overload to users in the environment of big data. And the existing personalization recommendation model is insufficient in integrating the temporal context of users' behavior.【Method/process】We build a new extend model of personalization recommendation based on the method of latent factor model. Temporal context of users' historical behavior is introduced into new model to improve the predictions' accuracy. We implement the new model based on the method of factorization machines,and verify the validity of new model by using the data of movielens dataset.【Result/conclusion】Experimental results demonstrate better performance of new model in improving the predictions' accuracy of users' preferences compared with existing model.
作者 刘海涛 陈廷斌 关可卿 张奇松 LIU Hai-tao;CHEN Ting-bin;G UAN Ke-qing;ZHAGN Qi-song(Dalian Neusoft University of Information,Dalian 116000,China)
出处 《情报科学》 CSSCI 北大核心 2018年第9期118-122,共5页 Information Science
关键词 潜在因子模型 时间序列 语义信息 信息筛选 信息匹配 推荐系统 latent factor model temporal context personalized messages information screening information matching recommendation systems
  • 相关文献

参考文献2

二级参考文献36

  • 1REGELSON M,FAIN D.Predicting click-through rate using keyword clusters[C]//Proceedings of the Second Workshop on Sponsored Search Auctions,EC 2006.Michigan:ACM.2006.
  • 2AGARWAL D,BRODER A.CHAKRABARTI D,et al.Estimating rates of rare events at multiple resolutions. Proceedings of the ACM SIGMOD International Conference on Management of Data.Beijing:ACM,2007:16-25.
  • 3RICHARDSON M,DOMINIWSKA E,RAGNO R.Predicting Clicks:Estimating the Click-Through Rate for New Ads[C]//Proceedings of the 16th International Conference on World Wide Web,WWW 2007.Banff:ACM, 2007:521-530.
  • 4CHAKRABARTI D,AGARWAL D,JOSIFOVSKI V.Contextual Advertising by Combining Relevance with Click Feedback[C]//Proceedings of the 17th International Conference on World Wide Web,WWW 2008.Beijing: ACM,2008:417-426.
  • 5GOLLAPUDI S,PANIGRAHY R,GOLDSZMIDT M.Inferring Clickthrough Rates on Ads from Click Behavior on Search Results[C]//Proceedings of the Workshop on User Modeling for Web Applications,Fourth International Conference on Web Search and Web Data Mining,WSDM 2011.Hong Kong:ACM,2011.
  • 6YAN J,LIU N,WANG G,et al.How much can Behavioral Targeting Help Online Advertising?[C]//Proceedings of the 18th International Conference on World Wide Web,WWW 2009.Madrid:ACM,2009:261-270.
  • 7AHMED A,LOW Y,ALY M,et al.Scalable distributed inference of dynamic user interests for behavioral targeting [C]//Proceedings of the 17th ACM S1GKDD International Conference on Knowledge Discovery and Data Mining. San Diego,CA:ACM,2011:114-122.
  • 8WANG X,LI W,CUI Y,et al.Click Through Rate Estimation for Rare Events in Online Advertising.Online Multimedia Advertising:Techniques and Technologies,Chapterl[M/OL].2011[2012-06-15].http://labs.yahoo. com/node/434.
  • 9PEARL J.Probabilistic Reasoning in Intelligent Systems:Networks of Plausible Inference[M].San Mateo,CA: Morgan Kaufmann Publishers,1988.
  • 10RUSSEL S,NORVIG P.Artificial Intelligence—A Modern Approach[M].Boston:Pearson Education,Publishing as Prentice-Hall,2002.

共引文献27

同被引文献43

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部