期刊文献+

智能变电站无线监测网络群优化算法研究 被引量:4

A Research on Optimization Algorithm of Wireless Monitoring Network Group in Smart Substation
原文传递
导出
摘要 针对目前物联网技术智能电网中搜索范围大、局部极值点多、难以选出最优解等问题,提出了基于捕食搜索策略的粒子群及萤火虫(P-GSO)和模糊层次的联合优化算法:采用标准粒子群算法和萤火虫算法相结合的方法弥补二者在全局和局部寻优中存在的不足,并利用模糊层次分析法计算目标函数的权重,计算出更有效的网络生命周期.理论分析和仿真结果表明,在大范围搜索和多极点的条件下,联合算法较PSO和GSO能够有效地减少搜索时间,并使结果的精度随着群搜索规模的增加逐渐提高. The smart grid which is based on the technology of Internet of things has many problems,such as large search area,many local extreme points,and difficult to select the optimal solution. So this paper proposes the combined optimization algorithm based on predatory search strategy particle swarm optimization algorithm and the firefly algorithm(P-GSO) and fuzzy analytic hierarchy process: using the standard particle swarm algorithm and the method of combining the firefly algorithm for both the deficiencies in the global and local optimization,and through the fuzzy analytic hierarchy process to calculate the weights of the objective function,then calculating the more efficient network life cycle. Theoretical analysis and simulation results show that under the condition of large scope search and multi pole,the combined algorithm is better than the PSO and GSO can effectively reduce the search time,and the accuracy of the results with the gradual increase in swarm search scale increases.
作者 杨毅 邵欣洋 YANG Yi;SHAO Xinyang(Faculty of Electric Power Engineering,Kunming University of Science and Technology,Kunming 650500,China;City College,Kunming University of Science and Technology,Kunming 650051,China)
出处 《昆明理工大学学报(自然科学版)》 CAS 北大核心 2018年第4期65-70,共6页 Journal of Kunming University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(50477008 51367009)
关键词 输变电设备 萤火虫算法 粒子群算法 群搜索优化算法 power transmission and transformation equipment GSO PSO group search optimization algorithm
  • 相关文献

参考文献5

二级参考文献72

  • 1彭喜元,彭宇,戴毓丰.群智能理论及应用[J].电子学报,2003,31(z1):1982-1988. 被引量:79
  • 2金飞虎,洪炳熔,高庆吉.基于蚁群算法的自由飞行空间机器人路径规划[J].机器人,2002,24(6):526-529. 被引量:52
  • 3孙波,陈卫东,席裕庚.基于粒子群优化算法的移动机器人全局路径规划[J].控制与决策,2005,20(9):1052-1055. 被引量:79
  • 4Fukuyama Y.Fundamentals of particle swarm techniques [A].Lee K Y,El-Sharkawi M A.Modern Heuristic Optimization Techniques With Applications to Power Systems [M].IEEE Power Engineering Society,2002.45~51
  • 5Eberhart R C,Shi Y.Particle swarm optimization:developments,applications and resources [A].Proceedings of the IEEE Congress on Evolutionary Computation [C].Piscataway,NJ:IEEE Service Center,2001.81~86
  • 6van den Bergh F.An analysis of particle swarm optimizers [D].South Africa:Department of Computer Science,University of Pretoria,2002
  • 7Kennedy J,Eberhart R C.A discrete binary version of the particle swarm algorithm [A].Proceedings of the World Multiconference on Systemics,Cybernetics and Informatics [C].Piscataway,NJ:IEEE Service Center,1997.4104~4109
  • 8Yoshida H,Kawata K,Fukuyama Y,et al.A particle swarm optimization for reactive power and voltage control considering voltage stability [A].Proceedings of the International Conference on Intelligent System Application to Power System [C].Rio de Janeiro,Brazil,1999.117~121
  • 9Angeline P.Using selection to improve particle swarm optimization [A].Proceedings of IJCNN99[C].Washington,USA,1999.84~89
  • 10Shi Y,Eberhart R C.A modified particle swarm optimizer [R].IEEE International Conference of Evolutionary Computation,Anchorage,Alaska,May 1998

共引文献603

同被引文献63

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部