期刊文献+

PML边界条件在空腔噪声计算中的应用

PML Boundary Conditions Using on Aerodynamic Noise Characteristics of Cavity Flow
原文传递
导出
摘要 通过数值模拟气动噪声对空腔进行外形优化,以达到降低空腔气动噪声的目的。为准确计算流场声压脉动,数值方法采用了大涡模拟(LES)技术,远场边界采用了完全匹配层边界条件(PML),空间格式采用色散相关保持格式(DRP),同时时间格式采用低耗散低色散5级Runge-Kutta(LDDRK5)格式以使得流场耗散和色散最小。通过对三种外形的空腔在来流马赫数0.41时监测点以及脉动流场的分析和判断,采用PML边界条件对内部流场的反射误差很小,可以稳定的吸收出流波动。结果表明,该计算方法可以较好的计算空腔的声压,给出气动噪声最小的最优外形,为空腔降噪优化和气动噪声的计算提供了参考。 The shape of the cavity are optimized by numerical simulation in order to reduce the aerodynamic noise. Optimizing the shape of cavity is an effective way to reduce the aerodynamic noise. By a low-speed turbulent flow over an open cavity,the flow mechanism and radiate noise have been computationally investigated. The flow field data is obtained by using Large Eddy Simulation(LES),and the Perfectly Matched Layer(PML) is used for external boundaries. To achieve low dissipation and dispersion errors,the Dispersion-Relation-Preserving(DRP) scheme is applied to spatial discretization and the optimized 5 stage low-dissipation and low-dispersion Runge-Kutta scheme(LDDRK5) is used for time integration. The test was performed over a Mach number of 0. 41 for three cavity configurations. The results indicate that relative reflection errors caused by PML boundary conditions are very small,and the PML boundary has been shown to be stable and has produced satisfactory numerical results. The above calculation method is an effective method to calculate the sound pressure of the cavity,and an optimal model is selected. This study provides a way for optimization of cavity noise reduction and calculation of aerodynamic noise.
作者 陈维 Chen Wei(Beijing Aerospace Technology Institute,Beijing 100074,China)
出处 《战术导弹技术》 北大核心 2018年第4期18-24,83,共8页 Tactical Missile Technology
关键词 空腔 PML边界条件 气动噪声 DRP格式 LDDRK cavity PML boundary aerodynamic noise DRP LDDRK
  • 相关文献

参考文献2

二级参考文献46

  • 1杨党国,李建强,罗新福,胡成行.弹穴流动特性高速风洞试验研究[J].实验流体力学,2006,20(4):33-39. 被引量:15
  • 2[1]Tam C K. Computational aeroacoustics issues and methods. J AIAA, 1995,33(10):1788-1796
  • 3[2]Crighton D G. Goals for computational aeroacoustics. Computational Acoustics: Algorithms and Applications, 1988, 3-20
  • 4[3]Lighthill M J. Report on the final panel discussion on computational aeroacoustics. Inst for Computer Applications in Science and Engineering, ICASE Rept, 1992
  • 5[4]Hixon R, Sigh S H, Mankbadi R R. Evaluation of boundary conditions for com putational aeroaconstics. J AIAA, 1995, 33:2006-2012
  • 6[5]Hardin J C, Pope D S. A new technique for aerodynamic noise calculation. Proceedings of the DGLRR/AIAA 14th Aeroacoustics Conference, AIAA, Washington D C, 1992, 448-456
  • 7[6]Hardin J C, Pope D S. An aconstic/viscons splitting technique for computational aeroacoustics. Theoretical and Computational Fluid Dynamics, 1994, 6:334-340
  • 8[7]Slimon S A, Soteriou M C, Davis D W. Computational aeroacoustics simulations using the expansion about incompressible flow approach. J AIAA, 1999, 37:409-410
  • 9[8]Ohn A Ekaterinaris. New formulation of Hardin-Pope equations for aeroacoustica. J AIAA, 37,1999
  • 10[9]Philip J M, Lyle N L, Ashok B, Wang Q.A parallel three-dimensional computational aeroacoustica method using nonlinear disturbance equations. J Computational Physics, 1997, 133:56-74

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部