期刊文献+

协同吸气式火箭发动机性能优化研究 被引量:1

Optimization Research on SABRE Engine Performance
原文传递
导出
摘要 在H=15~25 km、Ma=2.5~5的飞行区间内,以提高SABRE循环效率为目标开展了优化研究,提出了两种优化方案,建立了SABRE发动机性能参数计算模型,计算了预冷器氦气出口温度提高50 K、氦气涡轮进口温度提高50 K和采用氦再循环方案后发动机推力、比冲和循环效率随飞行高度的变化规律。结果表明:预冷器氦气出口温度提高50 K,循环效率平均提高1.79%,比冲平均提高2196 m/s;氦气涡轮进口温度提高50 K,循环效率平均提高3.95%,比冲平均提高4833 m/s;采用氦再循环方案,循环效率平均提高3.4%,比冲平均提高4154 m/s;但分别造成推力1%、2%和1.8%的下降,这是氢流量减少造成的。预冷器氦气出口温度和氦气涡轮进口温度得以提高的关键是设计出更加快捷、高效的预冷换热器,但具有较大的技术难度,氦再循环方案实现较为容易,但只工作于20 km以上的飞行高度,并且增加了发动机结构质量。当前技术条件下可优先发展氦再循环技术,长远考虑应发展预冷换热器相关技术,加强在材料、设计、加工等方面的创新研究。 In order to improve the efficiency of SABRE in the flight range of H = 15 ~ 25 km and Ma =2. 5 ~ 5,three kinds of optimization scheme are put forward,calculation model of performance parameters is established,the thrust,specific impulse and efficiency of SABRE are obtained when the pre-cooler outlet temperature of helium increases 50 K,the helium turbine inlet temperature increases 50 K and the helium recirculation is applied. The results indicate that when the pre-cooler helium outlet temperature increase 50 K,cycle efficiency increased by 1. 79% on average,specific impulse increase an average of2196 m/s; When the helium turbine inlet temperature increases 50 K,cycle efficiency increased by3. 95% on average,specific impulse increase an average of 4833 m/s; When the helium recirculation is applied,cycle efficiency increased by 3. 4% on average,specific impulse increase an average of4154 m/s; But the trust decreases by 1%,2% and 1. 8% respectively,Which is caused by the decrease of hydrogen. A more efficient pre-cooler is critical to increase the pre-cooler outlet temperature of helium and the helium turbine outlet temperature,which is difficulty. The application of helium recirculation is easy,but it can be used above20 km,moreover it increases the mass of structure. The helium recirculation should be prior to develop in current technology conditions,while efficient pre-cooler should be paid more attention in the long run,the innovation research in material,designing and processing should be strengthened.
作者 杨新垒 聂万胜 宋强 Yang Xinlei;Nie Wansheng;Song Qiang(Company of Postgraduate Management,Space Engineering University,Beijing 101416,China;Department of Aerospace Science and Technology,Space Engineering University,Beijing 101416,China)
出处 《战术导弹技术》 北大核心 2018年第4期99-104,共6页 Tactical Missile Technology
基金 国家自然科学基金(91441123)
关键词 协同吸气式火箭发动机 预冷器 组合循环发动机 synergistic air-breathing rocket engine precooler combined cycle engine
  • 相关文献

参考文献3

二级参考文献39

  • 1李宇.三维流/热耦合数值模拟程序的发展及方法研究[D].北京:北京航空航天大学,2011.
  • 2RICHARD V, ALAN B. The Skylon spaceplane, IAA 95- V3.07 [R]. [S.1.]: IAA, 1995.
  • 3RICHARD V, ALAN B. The SKYLON spaceplane: pro- gress to realization[J]. JBIS, 2008, 61: 412-418.
  • 4RICHARD V, ALAN B. The SKYLON spaceplane[J]. JBIS, 2004, 57:22-32 .
  • 5HEMPSELL M,BOND A,VARVILL R. Progress on the SKYLON and SABRE development programme [C]//62nd International Astronautical Congress. [S.1.]: IAC, 2011: 111-121.
  • 6ROGER L, ALAN B. The SKYLON project, AIAA 2011- 2244[R]. USA: AIAA, 2011.
  • 7WEBBER H, FEAST S, BOND A. Heat exchanger design in combined cycle engines [J]. Journal of the British Interplanetary Society, 2009, 62: 122-130.
  • 8WEBBER H,, ALAN B, MARK H, et al. The sensitivity of precooled air-breathing engine performance to heat exchanger design parameters[J]. JBIS, 2007, 60: 188-196.
  • 9JAMES J M, CHRISTOPHER M H, ALAN B. An experi- mental precooler for airbreathing rocket engines [J]. JBIS, 2001, 54:199-209 .
  • 10TAYLOR N V,TETSUYA S. Experimental and computa- tional an[J].火箭推进,2008,34(6):31-35.

共引文献69

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部