期刊文献+

高效沉淀池在污水处理厂深度除磷中的工艺调试研究 被引量:12

下载PDF
导出
摘要 我国对城镇污水处理厂的排放标准日益提高,污水深度处理工艺正广泛应用于城镇污水处理厂的新建和提标改造工程。磷是造成水体富营养化的限制因子,采用高效沉淀池工艺可实现深度除磷。文章进行了高效沉淀池工艺调试研究,研究结果表明高效沉淀池工艺对城镇污水处理厂深度除磷有良好的效果,高效沉淀池出水TP可达到甚至高于《城镇污水处理厂污染物排放标准》(GB18918-2002)的一级A标准。工艺调试研究时,先进行实验室静态试验研究,确定适合生物反应池出水的PAM型号,同时确定PAC和PAM的初始投加量。高效沉淀池工艺调试研究时,按污泥回流量、PAM投加率、PAC投加率逐步确定最佳工艺参数,并根据排泥浓度和污泥沉降比确定最佳排泥量。 The discharge standard of pollutants for municipal wastewater treatment plant becomes stricter. More advanced treatment technologies are applied in the construction projects and upgrading and reconstruction projects. Phosphorus is the limiting factorof eutrophication of water body. Phosphorus removal can be achieved by high-efficiency sedimentation tank. Commissioning researchshowed that high-efficiency sedimentation tank had good treatment efficiency on advanced phosphorus removal. The index of TP ineffluent could meet or even exceeding the first level A criteria specified in the Discharge Standard of Pollutants for MunicipalWastewater Treatment Plant(GB 18918-2002) . The laboratory static test revealed the optimal type of PAM for the effluent of biological reaction tank,and the initial dosage of PAC and PAM for commissioning research. Optimum process parameters (return sludgequantity,PAM dosage and PAC dosage)were confirmed step by step,and excess sludge discharge was determined by sludge concentration and sludge settling velocity.
作者 徐辉 赵林辉
出处 《科技创新与应用》 2018年第29期116-119,共4页 Technology Innovation and Application
基金 上海市政工程设计研究总院(集团)有限公司科技项目(编号:K2018J023)
关键词 城镇污水处理厂 高效沉淀池 深度除磷 工艺调试研究 urban sewage treatment plant high efficiency sedimentation tank deep phosphorus removal process commissioningresearch
  • 相关文献

参考文献3

二级参考文献24

  • 1Wang HJ, Liang XM, Jiang PH, et al. TN: TP ratio and planktivorous fish do not affect nutrient-chlorophyll relationships in shallow lakes. Freshwat Biol, 2008, 53:935-944
  • 2Schindler DW, Hecky RE, Findlay DL, et al. Eutrophication of lakes cannot be controlled by reducing nitrogen input: Results of a 37-year whole-ecosystem experiment. Proe Natl Acad Sci USA, 2008, 105: 11254-11258
  • 3Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch Hydrobiol, 1966, 62, 1-28
  • 4Huber W, Brezonik P, Heaney J, et al. A Classification of Flor ida Lakes. Department of Environmental Engineering and Sci ences, University of Florida, Gainesville, Florida, USA, 1982
  • 5OECD. Eutrophication of Waters. Monitoring, Assessment and Control, OECD, 2006
  • 6Redfield AC, Ketchum BH, Richards FA. The influence of organisms on the composition of sea-water. In: The Sea. Ideas and Observations on Progress in the Study of the Seas. Vol. 2, The Composition of Sea-water Comparative and Descriptive Oceanog raphy. New York. London:Interscience Publishers, 1963, 26-77
  • 7Smith VH. The nitrogen and phosphorus dependence of algal bi omass in lakes: an empirical and theoretical analysis. Limnol Oceanogr, 1982, 27:1101-1112
  • 8Klausmeler CA, Litchman E, Daufresne T, et al. Optimal nitrogen to-phosphorus stoichiochemistry of phytoplankton. Nature, 2004, 429:171-174
  • 9Canfield Jr DE. Prediction of chlorophyll a concentrations in Florida lakes: The importance of phosphorus and nitrogen. Water Researches Bulletin, 1983, 19:255-262
  • 10Florida Lakewatch. A Beginaer's Guide to Water Management - Nutrients. Information Circular No. 102. Department of Fisheries and Aquatic Sciences and Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA, 2000

共引文献75

同被引文献58

引证文献12

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部