期刊文献+

基于卡尔曼滤波的动目标角度跟踪FPGA实时处理算法

The FPGA real-time rocessing algorithm for the angle tracking of the moving-target based on the Kalman filtering technology
下载PDF
导出
摘要 反辐射打击过程中,由于导引头测量存在常值偏差和随机噪声,且随机噪声方差未知情况下,角度测量输出结果将与真实结果存在一定偏差,并有可能出现角度突变,造成控制系统紊乱。采用卡尔曼滤波技术,可有效消除测量噪声情况下带来的角度抖动,使测量结果趋近平滑曲线,易于导弹控制系统作出正确引导,有效提升反辐射打击过程中的角度测量精度,从而对目标辐射源建立较精确的打击弹道,提升命中精度。对正弦曲线运动下的某导引头测角结果对应的目标轨迹测量结果进行卡尔曼滤波,数学仿真结果和FPGA实现结果均表明该滤波方案对测量结果提升较为明显。 During the anti-radiation blow,the constant deviation and random noise is existed in the measurement of the seeker.If the random noise variance is unknown,the output results of the angle measurement are deviated from the real results to some extent,which might result in the angle mutation.It is apparent that the angle jitter will be reduced under the noise measurement by adopting the Kalman filtering technology.The measurement results approach the smooth curve to indicate that the missile control system could conduct correct guidance to improve the accuracy of the angle measurement during the anti-radiation blow.Then,the accurate strike trajectory of the target radiation source is established to improve the hit rate.The Kalman filterin is applied to the target trajectory measurement for a certain angle measurement of the seeker under sinusoidal motion.The mathematics simulation results and FPGA realization results both indicate that the measurement has been apparently improved by the filtering technology.
作者 司晨诚 Si Chencheng(Unit 32069 of PLA,Nanjing 210000,Jiangsu,China)
机构地区 中国人民解放军
出处 《航天电子对抗》 2018年第4期7-10,共4页 Aerospace Electronic Warfare
关键词 卡尔曼滤波 反辐射 自适应滤波器 FPGA实现 Kalman filtering anti radiation adaptive filter FPGA realization
  • 相关文献

参考文献4

二级参考文献29

  • 1邓自立,张焕水.自校正Kalman滤波、预报、去卷、平滑新方法[J].控制理论与应用,1994,11(2):137-145. 被引量:11
  • 2韩建涛,张月,陈曾平.天文图像序列中弱目标的实时检测算法[J].光电工程,2005,32(12):1-4. 被引量:6
  • 3徐剑,毕笃彦,王洪迅,袁建国.基于卡尔曼滤波和粒子滤波器级联模型的静基座惯导初始对准算法及仿真[J].电光与控制,2006,13(1):27-32. 被引量:6
  • 4SHALOM Y B, DAUM F, HUANG J. The probabilistic data association filter: Estimation in the presence of measurement origin uncertainty [ J ]. IEEE Control Systems Magazine,2009 (9) :82-100.
  • 5ARULAMPALAM M S, MASKELL S. A tutorial on particle filters for online nonlinear/non-gaussian bayesian tracking [ J ]. IEEE Transactions on Signal Processing, 2002,50 (2) :174-188.
  • 6DOUCET A, GODAILL S. On sequential Monte Carlo methods for Bayesian filtering [J]. Statistics and Computing,2000 (10) :197-208.
  • 7QI Cheng,BONDON P. A new unscented particle filter[ C ]// Acoustics Speech and Signal Processing of IEEE International Conference on ICASSP,2008:3417-3420.
  • 8LANCASTER J,BLACKMAN S,YU L,et al. IMM/MHT tracking with an unscented particle filter with application to ground targets [ J ]. Proc. of SPIE,2X/7,6699:19-22.
  • 9PAYNE O. An unscented particle filter for GMTI tracking [ C ]//IEEE Aerospace Conference Proceedings, 2004: 1869-1875.
  • 10NI Bingbing,WINKLER S, KASSIM A A. An efficient stochastic framework for 3D human motion tracking [ C ]// Proc. of SPiE-IS&T Electronic Imaging,2009,6805 : 1-10.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部