摘要
研究了一类非线性耦合的非局部扩散系统ut=J*u-u+vp,vt=J*v-v+wq,wt=J*w-w+ur的柯西问题。首先根据是否存在全局解建立了Fujita曲面1<pqr≤(pqr)_c。即证明了:如果1<pqr≤(pqr)_c,其任意正解都在有限时刻爆破;而当pqr>(pqr)c时,则既存在全局解也存在非全局解。然后根据初始值在无穷远处的衰减率建立了第二临界曲面。
Abstract: This paper discusses about the Cauchy problem tbr a nonlinear coupled nonlocal diithsion system ut = J*u -u +vp,vt = J*v-v+wq,wt = J*w-w +u. Firstly,it is proved that the Fujitacurved surface is (pqr)c = 1 + 2/Nmax{pq +p + 1 ,qr + q + 1 ,pr + r + 1} based on whether there exists global solutions. Namely,if 1 〈 pqr 〈_ (pqr)c ,then every nonnegative solution blows up in finite time, but torpqr 〉 (pqr)~ , there exists both global and non-global solutions to the problem. Then, the secondal7 critical curved surface on the space-decay of initial value at infinity is established.
作者
杨丽丽
李中平
YANG Lili;LI Zhongping(College of Mathematics and Information,China West Normal University,Nanehong Siehuan 637009,China)
出处
《西华师范大学学报(自然科学版)》
2018年第3期263-270,共8页
Journal of China West Normal University(Natural Sciences)
基金
国家自然科学基金项目(11301419)