期刊文献+

Soil Properties under Major Halophytic Vegetation Communities in Arid Regions 被引量:3

Soil Properties under Major Halophytic Vegetation Communities in Arid Regions
原文传递
导出
摘要 Soil physical, chemical, and biological properties of seven desert halophytes(Kalidium foliatum, Achnatherum splendens, Leymus secalinus, Phragmites australis, Karelinia caspia, Tamarix ramosissima, Atriplex tatarica) were investigated in saline-sodic badlands of the Hexi Corridor, Gansu Province, China. The results showed that sampled soils were generally infertile and characterized by low levels of organic matter, available nitrogen, phosphorus, copper, manganese, and zinc as well as microbial communities with dominant bacteria supporting native desert halophytes. Available potassium and iron were sufficient in the study sites. With increasing soil layer depth, the concentrations of organic matter, available nitrogen, potassium, manganese, copper, bacteria, and actinomyces in the soil decreased significantly(P〈0.05), while the concentrations of moisture, available iron, and zinc in the soil increased significantly(P〈0.05). The contents of moisture, total salt, organic matter, available nitrogen, potassium, iron, manganese, zinc, copper, bacteria, and actinomyces showed significant seasonal variations(P〈0.05). All these variables except bacteria and actinomyces were the greatest in summer and the lowest in spring. The redundancy analysis revealed that total salt, organic matter, available potassium, and copper were positively correlated with vegetation coverage. K. foliatum community was the constructive or dominant species in the desert community for the biological control of soil salinization. Soil physical, chemical, and biological properties of seven desert halophytes(Kalidium foliatum, Achnatherum splendens, Leymus secalinus, Phragmites australis, Karelinia caspia, Tamarix ramosissima, Atriplex tatarica) were investigated in saline-sodic badlands of the Hexi Corridor, Gansu Province, China. The results showed that sampled soils were generally infertile and characterized by low levels of organic matter, available nitrogen, phosphorus, copper, manganese, and zinc as well as microbial communities with dominant bacteria supporting native desert halophytes. Available potassium and iron were sufficient in the study sites. With increasing soil layer depth, the concentrations of organic matter, available nitrogen, potassium, manganese, copper, bacteria, and actinomyces in the soil decreased significantly(P〈0.05), while the concentrations of moisture, available iron, and zinc in the soil increased significantly(P〈0.05). The contents of moisture, total salt, organic matter, available nitrogen, potassium, iron, manganese, zinc, copper, bacteria, and actinomyces showed significant seasonal variations(P〈0.05). All these variables except bacteria and actinomyces were the greatest in summer and the lowest in spring. The redundancy analysis revealed that total salt, organic matter, available potassium, and copper were positively correlated with vegetation coverage. K. foliatum community was the constructive or dominant species in the desert community for the biological control of soil salinization.
出处 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第5期376-386,共11页 武汉大学学报(自然科学英文版)
基金 Supported by the National Natural Science Foundation of China(31460630,41163002 and 41363004) the Key Laboratory of Grassland Ecosystem of Ministry of Education(2017-D-05)
关键词 desert halophyte soil fertility trace element redun-dancy analysis desert halophyte soil fertility trace element redun-dancy analysis
  • 相关文献

参考文献6

二级参考文献113

共引文献244

同被引文献54

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部