期刊文献+

一种基于几何力学的机械臂末端规划算法 被引量:1

AN ALGORITHM OF PATH PLANNING FOR MANIPULATOR END-EFFECTOR BASED ON GEOMETRIC MECHANICS
下载PDF
导出
摘要 在几何力学框架下提出了开链机械臂末端实时追踪避障算法.首先,将回转力引入机械臂末端的自然运动方程,可以在工作空间获得光滑的避障轨迹;其次,利用阻尼最小二乘法求解相应的逆运动学问题,得到关节空间的平滑运动轨迹;最后,通过6自由度机械臂的仿真,并与经典的RRT算法作对比,验证了所提算法的有效性. An online algorithm of real-time collision avoidance and trajectory tracking for the manipulator end-effector is proposed in the framework of geometric mechanics in this paper. First,the gyroscopic force is introduced in the motion of end-effector to generate its collision-free smooth trajectory in work space. Next,the corresponding smooth trajectories in the joint space are obtained by solving the inverse kinematics problem with the damped least square method. Finally,through the comparison with the classical RRT algorithm,the effectiveness of the proposed algorithm is illustrated by numerical simulations of a 6 DOF manipulator.
作者 王本亮 高山 孙宏伟 史东华 Wang Benliang;Gao Shan;Sun Hongwei;Shiuongnua(School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China;Beijing Key Lab on Mathematical Characterization,Analysis,and Applications of Complex Information,Beijing 100081,China;The 716th Research Institute,China Shipbuilding Industry Corporation,Lianyungang 222006,China)
出处 《动力学与控制学报》 2018年第5期391-396,共6页 Journal of Dynamics and Control
关键词 反应规划 机械臂 回转力 阻尼最小二乘法 RRT reaction planning manipulator gyroscopic force damped least squares method RRT
  • 相关文献

参考文献2

二级参考文献17

  • 1刘端.NOETHER’S THEOREM AND ITS INVERSE OF NONHOLONOMIC NONCONSERVATIVE DYNAMICAL SYSTEMS[J].Science China Mathematics,1991,34(4):419-429. 被引量:17
  • 2郭仲衡.一类非完整力学问题的合理解[J].中国科学(A辑),1994,24(5):485-497. 被引量:9
  • 3钟万勰,高强.约束动力系统的分析结构力学积分[J].动力学与控制学报,2006,4(3):193-200. 被引量:28
  • 4Goldstein H, Poole C, Safko J. Classical mechanics, third edition. New York : Addison-Wesley, 2002.
  • 5Arnold V I, Kozlov V V, Neishtadt A I. Mathematical aspects of classical and celestial mechanics, third edition. Berlin: Springer-Verlag, 2006.
  • 6吴大猷.理论物理第一册:古典动力学.北京:科学出版社,2010.
  • 7Koon W S, Marsden J E. The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems. Reports on mathematical physics, 1997,40 (1) :21-62.
  • 8Cortes J. Energy conserving nonlonomic integrators. Proceedings of the fourth international conference on dynamical systems and differential equations. Wilmington, NC, USA, 2002 : 189-199.
  • 9Betsch P. Energy-consistent chanical systems with mixed numerical integration of meholonomic and nonholonomic constraints. Computer methods in applied mechanics and engineering, 2006,195:7020 - 7035.
  • 10McLachlan R, Perlmutter M. Integrators for nonholonomic mechanical systems. Journal of nonlinear science, 2006, 16:283 - 332.

共引文献33

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部