期刊文献+

高光谱海岸带影像水陆区域分割方法研究 被引量:1

The segmentation method of water and land area in the hyperspectral coastal zone image
下载PDF
导出
摘要 高光谱海岸带区域影像的多纹理、多边缘信息特性给区域分割带来困难.在C-V模型基础上针对海岸带区域影像的特性提出一种区域分割的活动轮廓模型,引入一边缘引导函数并对其通过梯度模值来增强捕捉细节信息的能力;此外在模型中还设置了一个约束函数,该函数利用演化曲线内部和外部区域灰度差来调控演化速度.实验结果验证了模型的有效性. It is difficult to segment the high spectral zone because of its abundant and intricate edge texture information.In this paper,based on the features of coastal zone remote sensing image,we proposed an active contour model for region segmentation which is on the basis of the C-V model.Introduce an edge function to improve the model's ability of capturing detail information which is based on the gradient magnitude.The experimental results verify the effectiveness of the proposed model.
作者 王相海 李智 万宇 宋传鸣 WANG Xianghai;LI Zhi;WAN Yu;SONG Chuanming(School of Computer and Information Technology,Liaoning Normal University,Dalian 116029,China;School of Mathematics,Liaoning Normal University,Dalian 116029,China)
出处 《辽宁师范大学学报(自然科学版)》 CAS 2018年第3期332-336,共5页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(41671439 61402214) 辽宁省高等学校教育厅创新团队支持计划项目(LT2017013)
关键词 海岸带区域 分割 C-V模型 梯度 引导函数 约束函数 coastal zone segmentation C- V model gradient edge function constraint function
  • 相关文献

参考文献3

二级参考文献84

  • 1侯志强,韩崇昭.基于力场分析的主动轮廓模型[J].计算机学报,2004,27(6):743-749. 被引量:20
  • 2李培华,张田文.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757. 被引量:125
  • 3张继武,张道兵,史舒娟,孙立新,许朝晖.基于水平集方法的数字胸片图像分割[J].中国图象图形学报(A辑),2004,9(12):1459-1465. 被引量:9
  • 4肖鹏峰,冯学智.高分辨率遥感图像分割与信息提取[M].北京:科学出版社,2012.
  • 5Chang C I. Hyperspectral Data Exploitation: Theory and Appli. cations [ M ]. New York : Wiley-Interscience, 2007.
  • 6Vane G, Goetz A F H. Terrestrial imaging sperctrometry:curren status, future trends[ J]. Remote Sensing of Environment, 1993, 44 : 177-126.
  • 7Tarabalka Y, Benediktsson J A, Chanussot J, et al. Multipk spectral-spatial classifl cation approach for hyperspeetral data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48 ( 11 ) :4122-4132.
  • 8Muhammed H H. Unsupervised hyperspectral image segmentation using a new class of neuro-fuzzy systems based on weighted incre- mental neural networks [ C ]//Proceedings of the Applied Imagery Pattern Recognition Workshop. Washington DC: IEEE Computer Society. 2002 : 171-177.
  • 9Mercier G, Den'ode S, Lennon M. Hyperspectral image segmen- tation with Markov chain model [ C ]//Toulouse, France : The IEEE International Geoscience and Remote Sensing Symposium. 2003:3766-3768.
  • 10Mallinis G, Koutsias N, Theocharis J B, P et al. SVM-based fuzzy decision trees for classifi cation of high spatial resolution re- mote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2012,50( 1 ) :149-169.

共引文献25

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部