期刊文献+

自然主义与数学本体论问题

Naturalism and The Ontological Problem of Mathematics
原文传递
导出
摘要 自然主义提供了思考数学本体论问题的一个重要进路,比如蒯因的不可或缺性论证就是一个典范。但不可或缺性论证有很多缺陷,于是蒯因之后的很多自然主义者试图对数学本体论问题做出新的自然主义回答,其中就包括伯吉斯和罗森的数学-自然主义论证和叶峰的物理主义论证。然而,精细的分析表明,这两个论证也是有问题的:前者隐含了关于常识和数学专家意见的一些错误假设,后者则在论证过程中忽略了关于物理对象的一个关键的区分。 Naturalism provides an important approach to ontological issues about mathematics, for which Quine's Indispensability argument is a paradigmatic example. But the Indispensability argument is severely defected, thus many naturalists after Quine seek for new answers to mathematical ontology, among which are Burgess and Rosen's Mathematical-naturalistic argument and Feng Ye's Physicalistic argument. However, a careful examination shows that both of the two arguments are problematic, the former relies on some mistaken presuppositions about the common sense and expert mathematician opinions, and the latter ignores a critical distinction about physical objects in the course of the argument.
作者 高坤 GAO Kun(Research Center for Philosophy of Science and Technology,Shanxi University,Taiyuan,Shanxi,03000)
出处 《自然辩证法通讯》 CSSCI 北大核心 2018年第9期51-58,共8页 Journal of Dialectics of Nature
关键词 自然主义 抽象对象 数学-自然主义论证 物理主义论证 Naturalism Abstract object Mathematical-naturalistic argument Physicalistic argument
  • 相关文献

参考文献3

二级参考文献50

  • 1Azzouni, J. , 1998, "On ' on what there iS' ", Pacific Philosophical Quarterly 79 : 1 - 18.
  • 2Baker, A. , 2001, "Mathematics, indispensability and scientific progress", Erkenntnis 55 : 85 - 116.
  • 3Baker, A. ,2005, "Are there genuine mathematical explanations of physical phenomena?", Mind 114:223 -238.
  • 4Benacerraf, P. , 1973, "Mathematical truth", Journal of Philosophy 70:661 -679.
  • 5Burgess, J. P. , 2004, "Mathematics and bleak house", Philosophia Mathematica (3) no. 12:18 -36.
  • 6Burgess, J.P. and Rosen,G. , 1997, A Subject with No Object, Oxford: Clarendon Press.
  • 7Chihara, C., 1990, Constructibility and Mathematical Existence, Oxford : Clarendon Press.
  • 8Colyvan, M. , 1999, "Confirmation theory and indispensability", Philosophical Studies 96:1 -19.
  • 9Colyvan, M. ,2002, "Mathematics and aesthetic considerations in science", Mind 111 : 69 -74.
  • 10Colyvan, M. ,2004, "Indispensability arguments in the philosophy of mathematics", in Stanford Encyclopedia of Philosophy. E. N. Zalta ( ed. ),http://plato.stanford.edu/entries/mathphil-indis/.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部