期刊文献+

一个非线性随机偏微分方程解的存在惟一性 被引量:1

Existence and uniqueness of solution for a nonlinear stochastic differential equation
下载PDF
导出
摘要 对一个随机偏微分方程,首先利用不动点定理给出局部解的存在惟一性,并利用解对初值的连续依赖,给出整体解的存在惟一性。 For a nonlinear stochastic differential equation, the existence and uniqueness of the local solution is given based on the fixed point theorem. With the continuous dependency of the solution on initial value, the existence and uniqueness of global solution is proved.
作者 王昭 鲍金洲 李永坤 WANG Zhao;BAO Jinzhou;LI Yongkun(School of Mathematics and Statistics,Changchun University of Technology,Changchun 130012,China)
出处 《长春工业大学学报》 CAS 2018年第4期398-403,共6页 Journal of Changchun University of Technology
基金 国家级大学生创新创业项目(201710190008) 吉林省科技厅基金资助项目(20140101206JC)
关键词 随机 偏微分方程 存在惟一性 stochastic differential equation;existence and uniqueness
  • 相关文献

参考文献2

二级参考文献27

  • 1Bertini L,Cancrini N,Jona-Lasinio G.The stochastic Burgers equation. Communications in Mathematical Physics . 1984
  • 2Da Prato G.Kolmogorov Equations for Stochastic PDEs. Advanced Courses in Mathematics CRM Barcelona . 2000
  • 3Gyngy I,Nualart D.On the stochastic Burgers’ equation in the real line. The Annals of Probability . 1999
  • 4Kim J U.On the stochastic Burgers equation with a polynomial nonlinearity in the real line. Discrete Contin Dyn Syst Ser B . 2006
  • 5Lions P L.Mathematical Topics in Fluid Mechanics, Volume 1, Incompressible Models. Oxford Lect. Series in Math. and its App . 1996
  • 6Majda A J,Bertozzi A L.Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics . 2002
  • 7Mattingly J C.The dissipative scale of the stochastics Navier-Stokes equation: regularization and analyticity. Journal of Statistical Physics . 2002
  • 8Rckner M,Sobol Z.Kolmogorov equations in infinite dimensions: well-posedness and regularity of solutions with applications to stochastic generalized Burgers equations. The Annals of Probability . 2006
  • 9Rckner M,Zhang X.Tamed 3D Navier-Stokes equation: existence uniqueness and regularity. Infin Dimens Anal Quantum Probab . 2009
  • 10Rckner M,Zhang X.Stochastic tamed 3D Navier-Stokes equations: existence uniqueness and ergodicity. Probability Theory and Related Fields . 2009

共引文献2

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部