期刊文献+

基于MRAI的伺服系统转动惯量辨识及改进研究 被引量:5

Inertia identification and its improvement of servo system based on MRAI
下载PDF
导出
摘要 针对伺服系统控制参数自整定所需转动惯量参数的辨识问题,对基于模型参考自适应辨识(MRAI)思想的转动惯量辨识方法进行了研究。根据离散递推辨识机制构建了自适应辨识律,并通过分析辨识增益大小对惯量辨识响应的影响,提出了一种辨识增益自适应调整的改进算法;基于惯量辨识结果评价标准,建立了分段函数以实现辨识增益的动态调整;在仿真模型和实际系统中对不同辨识增益对惯量辨识的影响进行了对比测试。研究结果表明:改进的惯量辨识方法可以解决惯量辨识响应快速性和稳定性的矛盾,能够快速跟踪系统转动惯量的变化,可用于伺服控制参数的自整定。 Aiming at the identification problem of the inertia,which is required by self-tuning of the servo control parameters,the method based on model reference adaptive identification( MRAI) was studied. The adaptive identification law was constructed according to the discrete recursive identification mechanism,and by analyzing the influence of the identifying gain size on the inertia identification response,an improved adaptive adjustment algorithm was proposed,which is based on the evaluation criteria of the identification result,and the piecewise function was established to realize the dynamic adjustment of the gain. In simulation model and actual system,the influence of different identifying gain was compared and tested. The results show that the improved method can solve the contradiction of the rapidity and stability of the inertia identification,and can quickly track the change of the inertia of the system,and can be used for the self-tuning of servo control parameters.
作者 董海军 段剑文 DONG Hai-jun;DUAN Jlan-wen(Hangzhou Zhenzheng Robot Technology Co.,Ltd.,Hangzhou 311121,China;Fair Friend Institute Electromechanics,Hangzhou Vocational and Technical College,Hangzhou 310018,China)
出处 《机电工程》 CAS 北大核心 2018年第9期959-963,共5页 Journal of Mechanical & Electrical Engineering
关键词 伺服 惯量辨识 模型参考自适应 servo inertia identification model reference adaptive
  • 相关文献

参考文献6

二级参考文献41

  • 1周海方,王雪帆.电机转子转动惯量的测量[J].电气技术,2006,7(12):37-40. 被引量:8
  • 2刘博伟.电机转子转动惯量获取方法研究[J].微电机,2006,39(3):97-100. 被引量:18
  • 3孙子文,吴平仿,纪志成.基于滑模MRAS速度估计的感应电机无传感器控制[J].微特电机,2007,35(6):53-56. 被引量:1
  • 4丁锋.自适应控制系统[M].北京:清华大学出版社,2002.
  • 5Guo Y, Huang L, Qiu Y, et al. Inertia identification and auto-tuning of induction motor using MRAS[ C]// Proceeding of the 3rd Power Electronics and Motion Control Conference, 2000 (8) : 1006-1011.
  • 6Ding F, Shi Y, Chen T. Auxiliary model based leastsquares identification methods for Hammerstein outputerror systems [ J]. Systems & Control Letters, 2007, 56(5) : 373-380.
  • 7Ding F, Chen HB, Li M. Multi-innovation least squares identification methods based on the auxiliary model for MISO systems[ J]. Applied Mathematics and Computation, 2007, 187 (2) :658-668.
  • 8Mudi R K,Pal N R,A robust self-tuning for PI-and PD-type fuzzy controllers,IEEE Transactions on Fuzzy System,1999(7):2-16.
  • 9P.S.Sastry,G.Santharam,and K.P.Unnikrishnan,Memory neuron networks for identification and control of dynamical systems,IEEE Trans Neural Networks,Mar.1994(5):306-319.
  • 10G.J.Wang and T.C.Chen.A robust parameters self-tuning learning algorithm for multilayer feedforward neural network,Neurocomputing,1999(25):167-189.

共引文献75

同被引文献36

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部