摘要
为有效克服人工鱼群算法容易陷入局部最优的影响,通过视野和步长的优化,促使在迭代次数增加的过程中,从全局搜索逐步转向精细搜索,避免算法出现部分最优的情况。仿真实验证明了这种改进人工鱼群算法优化小波神经网络可以有效地提升矿用变压器故障诊断的精度,提高了诊断效率。
Aiming at the problem that the artificial fish swarm algorithm is easy to fall into the local optimum, the visual field and the step size are optimized to promote the gradual shift from the global search to the fine search in the process of increasing the number of iterations, so as to avoid partial optimality of the algorithm. Simulation experiments show that this improved artificial fish swarm algorithm to optimize wavelet neural network can be effectively applied to the mining transformer fault diagnosis and improve the diagnostic efficiency.
作者
张英杰
陈尔奎
吴梅花
周栾
ZHANG Ying-jie;CHEN Er-kui;WU Mei-hua;ZHOU Luan(College of Electrical and Automation Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
出处
《煤炭技术》
CAS
2018年第9期323-325,共3页
Coal Technology
关键词
变压器
故障诊断
人工鱼群算法
小波神经网络
transformer
fault diagnosis
artificial fish swarm algorithm
wavelet neural network