摘要
针对三维激光扫描点云数据包含大量冗余数据、利用率不高等问题,提出了一种基于点云数据局部邻域内点的投影关系来判断边界特征点的快速算法。该算法利用邻域点投影的方位角差值进行特征点提取。结果表明,该算法提取速度快,冗余度少,可清晰完整地提取构筑物外部轮廓线和内部细节特征线。
Aiming at the problem that the 3D laser scanning cloud data contains a large amount of redundant data and the utilization rate is not high, a fast algorithm based on the projection relation of the point in the local neighborhood of the point cloud data is proposed to judge the boundary feature points. It uses the azimuth difference of the neighborhood point projection to extract the feature points. The experimental results show that the proposed algorithm is fast and redundant, and can extract the external contour lines and internal detail lines clearly and completely.
作者
蒋梅笑
章光
徐卫青
陈西江
JIANG Mei-xiao;ZHANG Guang;XU Wei-qing;CHEN Xi-jiang(School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China)
出处
《武汉理工大学学报》
CAS
北大核心
2017年第6期68-72,共5页
Journal of Wuhan University of Technology
基金
国家自然基金青年科学基金(41501502)
东华理工大学江西省数字国土重点实验室开放研究基金(DLLJ201601)
武汉市测绘研究院博士后创新实践基地科研项目(WGF 2016002)
国家"十三五"重点研发计划重点专项项目(2016YFC0802509)
关键词
特征提取
邻域关系
K-D树
三维激光扫描
feature extraction
domain relationship
k-d tree
3D laser scanning