期刊文献+

多旋翼无人机编队动态航路规划研究 被引量:5

On Dynamic Route Planning for Multi-rotor UAV Formation
下载PDF
导出
摘要 针对多旋翼无人机的编队动态航路规划问题,提出一种蚁群算法和快速扩展随机树RRT算法相结合的改进混合算法。首先利用蚁群算法离线搜索全局航路代价最小的初始航路,在局部航路规划中提出"协同避障—重构"策略,同时运用改进RRT算法实时修正几何航路,使机群满足时间协同约束绕过静态威胁源和突发障碍物,编队飞行至目的地。仿真结果表明,提出的改进混合算法和策略能有效规划无人机动态无碰航路,相较普通RRT算法,航路最优性及局部航路在线搜索速率得到明显提升。 To solve the problem of dynamic route planning for multi-rotor Unmanned Aerial Vehicle (UAV) formation, an improved hybrid algorithm combining ant colony algorithm with Rapidly-exploring Random Tree (RRT) algorithm was proposed. Firstly, the ant colony algorithm was used to search the original global route with the lowest cost, and the "cooperative avoidance-reconstruction" strategy was proposed in the local route planning. Then the improved RRT algorithm was used to modify the geometric route in real time, thus the UAV formation could avoid the static threats and unexpected obstacles and fly to the destination while satisfying the time constraints. The simulation results show that: 1 ) The improved hybrid algorithm and strategy can implement the dynamic route planning for UAVs effectively;and 2) Compared with the common RRT algorithm, the optimality of the overall route and the online search rate of the local route are improved significantly.
作者 李佳欢 王新华 周城宇 杨天开 曾旭 LI Jia-huan;WANG Xin-hua;ZHOU Cheng-yu;YANG Tian-kai;ZENG Xu(Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《电光与控制》 北大核心 2018年第9期53-57,共5页 Electronics Optics & Control
关键词 无人机编队 动态航路规划 队形重构 蚁群算法 快速扩展随机树算法 混合算法 UAV formation dynamic route planning formation reconstruction ant colony algorithm rapidly-exploring random tree algorithm hybrid algorithm
  • 相关文献

参考文献1

二级参考文献19

  • 1唐振民,赵春霞,杨静宇,陆建峰.地面自主机动平台的局部路径规划[J].机器人,2001,23(S1):742-745. 被引量:8
  • 2LaValle S M. Planning Algorithms. Illinois, USA: University of Illinois Press, 2004.
  • 3LaValle S M. Rapidly-Exploring Random Trees: A New Tool for Path Planning. Technical Report, TR98-11, Ames, USA: Iowa State University. Department of Computer Science, 1998.
  • 4LaValle S M, Kuffner J. Rapidly-Exploring Random Trees: Progress and Prospects// Proc of the International Workshop on Algorithmic Foundations of Robotics. Hanover, USA, 2000:45 -59.
  • 5Laumond J P, Sekhavat S, Lamiraux F. Guidelines in Nonholonomic Motion Planning for Mobile Robots. Lectures Notes in Control and Information Sciences, 1998, 229:1-53.
  • 6Melchior N A, Simmons R. Particle RRT for Path Planning with Uncertainty// Proc of the IEEE International Conference on Robotics and Automation, Roma, Italy, 2007 : 1617 - 1624.
  • 7Kuffncr J J Jr, LaValle S M. RRT-Conncct : An Efficient Approach to Single-Query Path Planning // Proc of the IEEE International Conference on Robotics and Automation. San Francisco, USA, 2000, II: 995 -1001.
  • 8Cheng Peng. Reducing RRT Metric Sensitivity for Motion Planning with Differential Constraints. Master Dissertation. Ames, USA: Iowa State University. Graduate College, 2001.
  • 9de Smith J. Distance and Path: The Development, Interpretation and Application of Distance Measurement in Mapping and Modeling. Ph. D Dissertation. London, UK: University of London, 2003.
  • 10AIDahak A, Elnagar A. A Practical-Evasion Algorithm: Detection and Tracking// Proc of the IEEE International Conference on Robotics and Automation. Roma, Italy, 2007:343 -348.

共引文献49

同被引文献40

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部