摘要
针对基于曲波变换的人脸识别技术仍受限于整个面部二维全局特征匹配的问题,提出一种利用曲波变换检测关键点的多模式3D纹理人脸识别方法。首先,通过快速曲波变换获得不同尺度的人脸图像;然后,利用曲波系数均值选择关键点,并通过关键点检测算法去除冗余点;最后,利用余弦规则进行特征匹配。实验结果显示,FRGC v2和BU-3DFE数据集上的验证率分别高达99.1%、95.3%,在中性和中性、非中性和中性、所有和中性三种模式下均优于其他几种较新方法。
As face recognition technology based on curvelet transform is still limited to the two-dimensional global feature matching of the entire face, a multi-mode 3 D texture recognition method using curvelet transform to detect key points is proposed. Firstly, different scale images are obtained by fast curvelet transform. Then, the key points are selected by curvelet coefficient, and redundant points are removed by the algorithm of key point detection. Finally, the cosine rule is used to finish the feature matching. The experimental results show that the recognition rate on the two databases can achieve at 99.1 % and 95.3 % respectively. It is higher than several other advanced methods at all the three patterns: neutral and neutral, neutral and neutral, all and neuter.
作者
尹方平
YIN Fang-ping(Institute of Electrical Technology,Guangdong Mechanical and Electrical College,Guangzhou 510515,China)
出处
《控制工程》
CSCD
北大核心
2018年第9期1733-1738,共6页
Control Engineering of China
关键词
曲波变换
人脸识别
特征匹配
关键点探测器
累积图
Curvelet transform
face recognition
feature matching
key point detector
accumulation map