期刊文献+

基于客户画像和GBDT算法的客户价值预测方法 被引量:5

Customer Value Prediction Method based on Customer Portrait and GBDT Algorithm
下载PDF
导出
摘要 针对现今客户价值的差异对企业服务运营的影响,本文基于对Superstore Sales客户消费数据的分析,提取客户特征构建基于消费行为的客户画像;抽取客户价值评价指标,经主成分分析法(PCA)优化后形成客户价值评价指标体系;利用K-Means聚类算法为客户贴上价值标签,构建基于梯度提升决策树算法(GBDT)的客户价值预测模型。实验结果表明,该方法预测结果具有较高的准确率,可挖掘隐藏的高价值客户,对于企业客户关系管理具有一定的研究借鉴价值与实际意义。 In view of the impact of the difference in customer value on the service operation of the enterprise, this paper is based on the analysis of customer data of Superstore Sales, extracts customer characteristics and builds customer portraits based on consumer behavior; then evaluation index system is formed via abstracted evaluative criteria of customer value through principal component analysis (PCA) ; followed by building customer value prediction model based on gradient boosted decision tree (GBDT) algorithm via classifying customers by their value using K - Means clustering algorithm. The experimental results show that the method has a high accuracy in predicting the results and can be used to mine hidden high value customers. It has certain reference value and practical significance for customer relationship management.
作者 冯娟娟 辜丽川 饶海笛 史先章 焦俊 王超 陈卫 FENG Juanjuan;GU Lichuan;RAO Haidi;SHI Xianzhang;JIAO Jun;WANG Chao;CHEN Wci(Anhui Agricuhural University,Hefei 230036,China;Key Laboratory of agricultural electronic commerce of the Ministry of Agriculture,Hefei 230036,China)
出处 《洛阳理工学院学报(自然科学版)》 2018年第3期51-56,共6页 Journal of Luoyang Institute of Science and Technology:Natural Science Edition
基金 国家自然科学基金项目(3177167)
关键词 客户价值预测 客户画像 GBDT 客户分类 customer value prediction customer portrait gradient lifting decision tree algorithm customer classification
  • 相关文献

参考文献4

二级参考文献41

  • 1赵晓煜,黄小原.基于数据挖掘的客户价值预测方法[J].东北大学学报(自然科学版),2006,27(12):1393-1396. 被引量:7
  • 2余瑞康,施润身.聚类思想在贝叶斯算法中的应用[J].计算机工程与应用,2006,42(28):159-160. 被引量:10
  • 3Goodman J. Leveraging the customer database to your comapetitive advantage[J]. Direct Marketing, 1992,55(8) :26 - 27.
  • 4Kowadlo G. Improving the robusmess of naive physics airflow mapping, using Bayesian reasoning on a multiple hypothesis tree[J ]. Robotics and Autonomous Systems, 2009 (3) : 12 -13.
  • 5Berry M J A, Linoff G S. Data Mining Techniques:for Marketing, Sales, and Customer Relationahip Management [ M ]. Beijing: China Machine Press, 2006:103 - 122.
  • 6HanJiawei,KamberM.数据挖掘:概念与技术[M].北京:机械工业出版社,2005:14-17.
  • 7王珊.数据仓库技术与联机分析处理[M].北京:科学出版社,1999.47-65.
  • 8Chen Zhenyu,Fan Zhiping.Dynamic customer lifetime value prediction using longitudinal data:an improved multiple kernel SVR approach[J].Knowledge-based Systems,2013,43(5):123-134.
  • 9Qi Jiaying,Zhou Wenpin,Chen Wenjing,et al.Are customer satisfaction and customer loyalty drivers of customer lifetime value:evidence from China and the United States in mobile data services[J].Information Technology and Management,2012,13(4):281-296.
  • 10Wang Guoyin,Wang Yan.3DM:domain-oriented data-driven data mining[J].Fundamenta Informaticae,2009,90(4):395-426.

共引文献99

同被引文献33

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部