期刊文献+

基于蚁群算法的轨道交通集群调度算法研究 被引量:3

Load balancing scheduling algorithm for rail transit cluster based on ant colony algorithm
下载PDF
导出
摘要 负载均衡调度是轨道交通集群系统的一大核心功能,海量任务的实时、高效、均衡调度对轨道交通系统的可靠运行起着至关重要的作用。由于轨道交通集群系统的历史原因,各个子系统的实时负载情况无法获取。文中在分析现有的负载均衡调度算法的基础上,提出了一种基于蚁群算法的面向轨道交通异构集群的负载均衡动态调度算法,以信息素浓度作为各个节点负载程度的依据,从而实现动态型的负载均衡调度。仿真结果表明,在轨道交通领域,基于蚁群算法的负载均衡调度算法比遗传算法、Min-Min算法、Max-Min算法具有更高的任务吞吐量。 Load balancing scheduling is a core function of the rail transit cluster dispatching system( RTCDS). Massively real-time,efficient and balanced scheduling of mass tasks plays a crucial role in the reliable operation of the rail transit system. Due to the historical reasons of the RTCDS,the real-time load of each subsystem cannot be obtained. On the basis of comparing with the existing load balancing scheduling algorithms,this paper proposes a load balancing scheduling algorithm of RTCDS based on the heuristic ant colony algorithm. The algorithm uses the pheromone concentration as the basis of the load degree of each node,so as to achieve dynamic load balancing scheduling. Simulation results show that in the field of rail transit,the load balancing scheduling algorithm based on ant colony algorithm has higher task throughput than the genetic algorithm,Min-Min algorithm and Max-Min algorithm.
作者 尧海昌 柴博周 刘尚东 季一木 YAO Haichang;CHAI Bozhou;LIU Shangdong;JI Yimu(School of Computer and Software,Nanjing Institute of Industry Technology,Nanjing 210023,China;School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)
出处 《南京邮电大学学报(自然科学版)》 北大核心 2018年第4期81-88,共8页 Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金 江苏省自然科学基金优秀青年基金(BK20170100) 江苏省重点研发计划(BE2017166)资助项目
关键词 蚁群算法 负载均衡调度 轨道交通集群 ant colony algorithm load balancing scheduling rail transit cluster
  • 相关文献

参考文献2

二级参考文献24

  • 1科默,林瑶.用TCP/IP进行网际互联,第一卷:原理、协议与结构[M].北京:清华大学出版社,2003.1.
  • 2海科泰信息技术有限公司.苏州地铁集中告警系统详细设计说明书[G].上海:上海科泰信息技术有限公司,2009.
  • 3Buyya Rajkumar, Yeo Chee Shin, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems, 2009, 25(6) 599 616.
  • 4Ibarra O, Kim C. Heuristic algorithms for scheduling inde- pendent tasks on nonidentical processors. Journal of the ACM, 1977, 77(2): 280-289.
  • 5Duan Rubing, Prodan Radu, Fahringer Thomas. Perform ance and cost optimization for multiple large-scale grid work- flow applications//Proceedings of the 2007 ACM/IEEE Conference on Supercomputing. Reno, Nevada, USA, 2007.- 110 121.
  • 6Nascimento Aline P, Boeres Cristina, Rebello Vinod E F. Dynamic self-scheduling for parallel applications with task dependencies//Proceedings of the 6th International Workshop on Middleware for Grid Computing (MGC 08). Belgium, 2008:1-6.
  • 7Atakan D, Fusun O. Genetic algorithm based scheduling of meta-tasks with stochastic execution times in heterogeneous computing systems. Cluster Computing, 2003, 7(2) : 177=190.
  • 8Buyya R, Murshed M, Abramson D, Venugopal S. Schedu ling parameter sweep applications on global grids: A deadline and budget constrained cost time optimization algorithm. Software-Practice and Experiences, 2005, 35(5): 491-512.
  • 9Kumar Subodha, Dutta Kaushik et al. Maximizing business value by optimal assignment of jobs to resources in grid com puting. European Journal of Operational Research, 2009, 194(3) 856-872.
  • 10Yang J, Khokhar A, Sheikh S, Ghafoor A. Estimating exe- cution time for parallel tasks in heterogeneous processing (HP) environment//Proceedings of the Heterogeneous Corn puting Workshop. Cancun, 1994:23-28.

共引文献86

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部