摘要
目前的可信模型并不能很好地解决P2P网络中存在的交易不可靠、动态网络拓扑等问题,针对这些问题并结合大数据的研究背景,提出了一种新型的二重动态组信任模型DualTrust。首先通过相似度计算将节点分为若干大组,再在大组中基于相对距离分成若干小组。赋予每个节点不同的角色,提出了3类新的信任度量方法,改进了超级节点的选择问题,并针对节点的动态加入和离开提出了新的解决策略。实验证明了新模型在处理大规模数据时具有更高的成功交易率以及更低的通信开销。
The current research of the trusted model does not solve the problems of unreliable transactions and dynamic network topology in P2 P networks. To address these issues and synthesize the research background of big data,a new type of dual dynamic group trust model is proposed. Dual Trust firstly divides peers into several large groups by similarity calculation,then divides them into groups by relative distance in large groups,and then assigns each peer a different role. Three new types of trust metrics are proposed,and the selection problem to super peer is solved. Finally,new solutions are proposed for the dynamic joining and leaving of peers. Experimental results show that Dual Trust model achieves higher successful transaction rate and better communication overhead in the large scale data enviroment.
作者
黄砚文
黄大广
张琳
HUANG Yanwen;HUANG Daguang;ZHANG Lin(School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Jiangsu Best Tone Information Service Company Ltd,Nanjing 210006,China)
出处
《南京邮电大学学报(自然科学版)》
北大核心
2018年第4期103-110,共8页
Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition
基金
国家自然科学基金(61402241)
江苏省自然科学基金优秀青年基金(BK20160089)
江苏省高校自然科学研究项目(17KJB520026)
南京邮电大学校级科研基金(NY217050)资助项目