期刊文献+

基于进化个体模糊适应值估计的交互式遗传算法 被引量:8

Interactive genetic algorithms based on estimation of individuals' fuzzy fitness
原文传递
导出
摘要 采用大规模种群进化优化策略,根据用户评价时间和单一数值适应值估计个体模糊适应值;根据个体表现型属性和参照个体模糊适应值宽度计算个体表现型相似度;利用个体表现型相似度对种群聚类并估计未评价个体的模糊适应值;基于个体模糊适应值和表现型相似性构造个体选择适应值,实现个体相似性选择.将所提出方法应用于室内挂钟进化设计,并与已有典型方法进行比较.结果表明,所提出方法在提高优化质量、减轻用户疲劳、提高搜索效率等方面均具有优越性. Individuals' fuzzy fitness is estimated according to user's evaluation time and single numerical fitness by using the large-scale population evolutionary optimization strategy. Individual phenotype similarity is calculated according to the individuals' phenotype attributes and the width of individuals' fuzzy finess. The population is divided into several clusters and the not assigned individuals' fuzzy fitness is estimated by using individuals' phenotypes similarity. The individuals' choice fitness is constructed based on individuals' fuzzy fitness and phenotype similarity to achieve individual similarity selection. The proposed algorithm is applied to a wall clock evolutionary design system, and compared with existing typical ones.The experimental results show that the proposed algorithm has advantages in improving optimization quality and alleviating user fatigue while improving its efficiency in exploration.
作者 郭广颂 陈良骥 文振华 侯军兴 GUO Guang-song;CHEN Liang-ji;WEN Zhen-hua;HOU Jun-xing(School of Mechatronics Engineering,Zhengzhou University of Aeronautics,Zhengzhou 450046,China;School of Mechanical Engineering,Tianjin Polytechnic University,Tianjin 300387,China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第9期1559-1566,共8页 Control and Decision
基金 国家自然科学基金项目(61673196) 河南省科技攻关项目(172102210513) 河南省高等学校重点科研项目(18A120012)
关键词 遗传算法 交互 估计 模糊适应值 相似度 genetic algorithms interaction estimation fuzzy fitness similarity
  • 相关文献

参考文献3

二级参考文献43

  • 1王悦,唐常杰,杨宁,陈瑜,徐开阔.基于基因表达式编程的进化模式定理[J].四川大学学报(工程科学版),2009,41(2):167-172. 被引量:8
  • 2郝国生,巩敦卫,史有群,王莉.基于满意域和禁忌域的交互式遗传算法[J].中国矿业大学学报,2005,34(2):204-208. 被引量:14
  • 3霍佳震,张磊.用节约法解决带有时间窗的满载车辆调度问题[J].工业工程与管理,2006,11(4):39-42. 被引量:13
  • 4周勇,巩敦卫,张勇.混合性能指标优化问题的进化优化方法及应用[J].控制与决策,2007,22(3):352-356. 被引量:8
  • 5FUNES P,BONABEAU E,HERVE J,et al.Interactive multiparticipant tour allocation[C]//Proceedings of IEEE Congress on Evolutionary Computation.Piscataway,NJ,USA:IEEE,2004,2:1699-1705.
  • 6BRINTRUP A,RAMSDEN J,TIWARI A.An interactive genetic algorithm-based framework for handling qualitative criteria in design optimization[J].Computers in Industry,2007(58):279-291.
  • 7KAMALIAN R,TAKAGI H,AGOGINO A M.Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation[C]//Proceedings of Genetic and Evolutionary Computation Conference.Berlin:Springer-Verlag,2004:1030-1041.
  • 8COELLO C A C,VELDHUIZEN D A,LAMONT G B.Evolutionary Algorithms for Solving Multi-Objective Problem[M].Boston:Kluwer Academic Publishers,2002.
  • 9LEE J Y,CHO S B.Sparse fitness evaluation for reducing user burden in interactive algorithm[C]//Proceedings of 1999 IEEE International Fuzzy Systems Conference.Piscataway,NJ,USA:IEEE,1999,2:998-1003.
  • 10GONG D W,YUAN J,MAX P.Interactive genetic algorithms with large population size[C]//Proceedings of IEEE Congress on Evolutionary Computation.Piscataway,NL USA:IEEE,2008:1678-1685.

共引文献20

同被引文献58

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部