期刊文献+

基于AQPSO的RBF神经网络自组织学习 被引量:6

AQPSO-based self-organization learning of RBF neural network
原文传递
导出
摘要 针对径向基函数(RBF)神经网络的结构设计及参数优化问题,提出一种自适应量子粒子群优化(AQPSO)算法.将RBF神经网络的网络规模及参数映射到粒子的空间位置,定义权值平均最优位置,从而对量子粒子群优化(QPSO)中L_(i,j)(t)进行评价,设计随粒子进化而自动调整的收缩-扩张系数β及网络规模调整规则,实现RBF神经网络结构和参数的自组织学习,提高网络的学习能力.通过非线性系统辨识以及短时交通流量预测验证所提出方法的有效性.实验研究表明,基于AQPSO的RBF神经网络自组织学习算法不仅能够获得较好的学习性能,而且其网络结构也较为紧凑. Aiming at the structural design and parameter optimization problems of radial basis function(RBF) neural network, an adaptive quantum-behaved particle swarm optimization(AQPSO) algorithm is proposed. In order to realize the self-organization learning of RBF nerual network and improve the performance, the network size and parameters of RBF neural network are mapped to the spatial position of the particles firstly, and then the weight mean of best particle positions is defined to evaluate L_(i,j)(t) in quantum-behaved particle swarm optimization, the contraction-expansion coefficient β can be adjusted according to the evolution of particles, and the self-organization rule of neural network size Ki is introduced. Finally, as a case study, the proposed approach is applied to the nonlinear system identification and short-term traffic flow forecasting problems. Compared with other methods, it is shown that the proposed approach exhibits better results with higher accuracy and smaller size of architecture.
作者 杨刚 王乐 戴丽珍 杨辉 陆荣秀 YANG Gang;WANG Le;DAI Li-zhen;YANG Hui;LU Rong-xiu(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China;Key Laboratory of Advanced Control & Optimization of Jiangxi Province,Nanchang 330013,China)
出处 《控制与决策》 EI CSCD 北大核心 2018年第9期1631-1636,共6页 Control and Decision
基金 国家自然科学基金项目(61673172 61663012 61364013) 江西省交通运输厅科技项目(2014X0015) 江西省教育厅科技项目(GJJ150490) 江西省科技厅青年科学基金项目(20161BAB212054)
关键词 RBF神经网络 自适应量子粒子群优化 自组织学习 RBF neural network adaptive quantum-behaved particle swarm optimization self-organization learning
  • 相关文献

参考文献3

二级参考文献55

  • 1张森,肖先赐.混沌时间序列全局预测新方法——连分式法[J].物理学报,2005,54(11):5062-5068. 被引量:25
  • 2崔志华,曾建潮.基于微分模型的改进微粒群算法[J].计算机研究与发展,2006,43(4):646-653. 被引量:9
  • 3王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635. 被引量:33
  • 4Kennedy J, Eberhart R C. Particle swarm optimization[C]. IEEE Int Conf on Neural Networks. Perth, 1995: 1942- 1948.
  • 5Van den Bergh E An analysis of particle swarm optimizers[D]. Pretoria: University of Pretoria, 2001.
  • 6Kennedy J. Small worlds and mega-minds: Effects of neighborhood topology on particle swarm performance[C]. Proc of the 1999 Congress on Evolutionary Computation. Piscatway, 1999, 3: 1933-1938.
  • 7Lovbjerg M, Rasussen T K, Krink T. Hybrid particle swarm optimizer with breeding and subpopulation[C]. Proc of the 3rd Genetic and Evolutionary Computation Conferences. San Francisco, 2001:469-476.
  • 8Kennedy J. Probability and dynamics in the particle swarm[C]. 2004 Congress on Evolutionary Computation. Piscatway, 2004, 1: 340-347.
  • 9Riget J, Vesterstroem J. A diversity-guided particle swarm optimizer--The ARPSO[R]. Aarhus: Department of Computer Science, University of Aarhus, 2002.
  • 10Sun J, Xu W B, Feng B. A global search strategy of quantum-behaved particle swarm optimization[C]. Proc of the 2004 IEEE Conf on Cybernetics and Intelligent Systems. Singapore, 2004: 291-294.

共引文献43

同被引文献37

引证文献6

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部