摘要
环境噪声干扰造成的室内蓝牙指纹库误差,直接对室内定位精度产生不利影响。通过构建室内蓝牙指纹库的GM(1,1)模型,对位置指纹库的误差进行修正,为在线阶段的匹配定位算法提供了更优质的指纹库数据。分别将GM(1,1)模型的残差修正法和Kalman滤波去噪法优化后的两种指纹库运用于K近邻、加权近邻、贝叶斯匹配算法中,仿真结果表明,GM(1,1)模型的残差修正法所获得的定位精度更高。
The error of indoor Bluetooth fingerprint database caused by environmental noise interference has a direct impact on the accuracy of indoor positioning.In this paper,the GM(1,1)model of indoor fingerprint database is used to modify the error of position fingerprint database,the matching positioning algorithm provides better quality fingerprint database data.The GM(1,1)models residual error correction method is applied to the K nearest neighbors algorithm,the weighted K nearest neighbors algorithm and Bayes localization algorithm respectively,the Kalman filter denoising method as above.The simulation results show that the GM(1,1)model's residual error correction method obtains higher positioning accuracy.
作者
张娟娟
蔡文郁
刘圆圆
ZHANG Juanjuan;CAI Wenyu;LIU Yuanyuan(School of Electronic Information,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2018年第5期13-17,共5页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(61801431
61871163)
浙江省自然科学基金资助项目(LY18F030006)
关键词
室内定位
指纹库
GM(1
1)模型
indoor positioning
fingerprint database
GM(1,1) model