摘要
设D^(m×n)为体D上m×n矩阵的集合.两个矩阵A,B∈D^(m×n)称为邻接的,如果rank(A-B)=1.按此邻接关系,以D^(m×n)为顶点集,本文得到一个连通图.设D和D′为两个体,|D|4,m,n,m′,n′2为整数.应用几何方法,本文刻画了从D^(m×n)到D′^(m′×n′)的非退化的图同态φ,其中φ满足条件:φ(0)=0且φ保持D^(m×n)中两个不同类型的标准极大邻接集的维数不变.作为一个推论,当D为EAS(every endomorphism to be automatically surjective)体时,本文给出了从D^(m×n)到D^(m′×n′)的非退化的图同态的代数公式.
Let Dm×n be the set of m × n matrices over a division ring D. Two matrices A, B ∈ Dm×n are adjacent if rank(A-B) = 1. By the adjacency, Dm×n is a connected graph. Suppose that D, D′ are division rings with |D|≥4 and m, n, m′, n′≥2 are integers. Using the geometric method, we characterize every non-degenerate′orphism φ from Dm×n to D′m′×n′ graph homomif φ(0) = 0 and φ preserves the dimensions of two standard maximal adjacent sets of different types in Dm×n. As a corollary, when D is an EAS(every endomorphism to be automatically surjective) division ring, we get algebraic formulas of every non-degenerate graph homomorphism from D^(m×n) to Dm′×n′.
作者
黄礼平
赵康
Liping Huang;Kang Zhao
出处
《中国科学:数学》
CSCD
北大核心
2018年第9期1095-1120,共26页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11371072)
湖南省教育厅(批准号:16C0037)资助项目
关键词
图同态
长方矩阵
体
矩阵几何
保邻接的映射
加权半仿射映射
graph homomorphisrn
rectangular matrix
division ring
geometry of matrices
adjacency preserving map
weighted semi-atone map