期刊文献+

完全分配可交换子空间格代数上的广义Jordan中心化映射 被引量:4

Generalized Jordan centralizer mapping on completely distributive commutative subspace lattice algebras
下载PDF
导出
摘要 基于Hilbert空间H上的一个完全分配可交换子空间格L,讨论L上的代数Alg L上的中心化映射。设Φ为Alg L上的一个可加映射,运用完全分配可交换子空间格代数的结构性质和代数分解,证明若存在正整数m、n、r≥1,使得?A∈Alg L,有(m+n)Φ(A^(r+1))-(mΦ(A)A^r+nA^rΦ(A))∈Z(Alg L),则存在Alg L的中心元素λ∈Z(Alg L),满足?A∈Alg L,有Φ(A)=λA。 Based on a completely distributive commutative subspace lattice L on a Hilbert H,the centralizer mapping on the completely distributive commutative subspace lattice algebras Alg Lis discussed.LetΦ:Alg L→Alg L be an additive mapping.According to the structural properties and algebraic decomposition on the completely distributive commutative subspace lattice algebras,it is proved that if there are some positive integer numbers m,n,r≥1,such that A∈Alg L,(m+n)Φ(A^r+1)-(mΦ(A)A^r+nA~rΦ(A))∈Z(Alg L),then there exists someλ∈Z(Alg L),which satisfies A∈Alg L,Φ(A)=λA.
作者 马飞 张建华 王保社 MA Fei;ZHANG Jianhua;WANG Baoshe(College of Mathematics and Information Science,Xianyang Normal University,Xianyang 712000,Shaanxi,China;School of Mathematics and Information Science,Shaanxi Normal University,Xi'an 710119,Shaanxi,China)
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期22-27,共6页 Journal of Shaanxi Normal University:Natural Science Edition
基金 陕西省教育厅研究计划(15JK1794) 咸阳师范学院青年骨干教师项目(XSYGG201602) 咸阳师范学院大学生创新创业训练计划(2015048)
关键词 中心化映射 可加映射 完全分配可交换子空间格代数 centralizer mapping additive map completely distributive commutative subspace lattice algebra
  • 相关文献

参考文献6

二级参考文献62

  • 1Beidar K. I., Martindal III W. S., Mikhalev A. V., Rings with generalized identities, New York: Marcel Dekker Inc., 1996.
  • 2Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 1991, 32: 609-614.
  • 3Benkovic D., Eremita D., Characterizing left centralizers by their action on a polynomial, Publ. Math. Debrecen., to appear.
  • 4Molnar L., On centralizers of an H^*-algebra, Publ. Math. Debrecen, 1995, 46: 89-95.
  • 5Vukman J., Kosi-Ulbl I., On centralizers of semiprime rings, Aequationes Math., 2003, 66: 277-283.
  • 6Vukman J., Kosi-Ulbl I., Centralisers on rings and algebras, Bull. Austral. Math. Soc., 2005, 71: 225-234.
  • 7Bresar M., Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 1991,III: 501-510.
  • 8Bresar M., Centralizing mappings and derivations in prime rings, J. Algera, 1993, 156: 385-394.
  • 9Bresar M., On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc., 1992, 114: 641-649.
  • 10Vukman J., An identity related to centralizers on semiprime rings, Comment. Math. Univ. Carolin., 1999, 40: 447-456.

共引文献25

同被引文献17

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部