摘要
本文介绍了由Young函数生成的Orlicz空间L_Φ~*[0,∞),然后建立了修正的加权K-泛函与加权光滑模的等价定理,并利用它得到了加Jacobi权的Szász-Kantorovich-Bézier算子在Orlicz空间中逼近的正、逆和等价定理.
In this paper, the Orlicz spaces LΦ*[0, ∞) which correspond to the Young function Φ(x) are introduced. The equivalence theorem between the modified weighted K-functional and the weighted modulus of smoothness is established. Finally, the direct, inverse and equivalent theorems of Szasz-Kantorovich-Bezier operators, which have the Jacobi weight function are given by the equivalence theorem between the K-functional and modulus of smoothness in Orlicz spaces.
作者
韩领兄
吴嘎日迪
HAN Lingxiong;WU Garidi(Mathematics College,Inner Mongolia University for Nationalities,Tongliao,Inner Mongolia,028043,P.R.China;School of Mathematical Sciences,Inner Mongolia Normal University,Hohhot,Inner Mongolia,010021,P.R.China)
出处
《数学进展》
CSCD
北大核心
2018年第5期719-734,共16页
Advances in Mathematics(China)
基金
partially supported by NSFC(No.11461052)