期刊文献+

加权的Szász-Kantorovich-Bézier算子在Orlicz空间中的逼近等价定理(英文)

Equivalent Theorems of Approximation by Weighted Szász-Kantorovich-Bézier Operators in Orlicz Spaces
原文传递
导出
摘要 本文介绍了由Young函数生成的Orlicz空间L_Φ~*[0,∞),然后建立了修正的加权K-泛函与加权光滑模的等价定理,并利用它得到了加Jacobi权的Szász-Kantorovich-Bézier算子在Orlicz空间中逼近的正、逆和等价定理. In this paper, the Orlicz spaces LΦ*[0, ∞) which correspond to the Young function Φ(x) are introduced. The equivalence theorem between the modified weighted K-functional and the weighted modulus of smoothness is established. Finally, the direct, inverse and equivalent theorems of Szasz-Kantorovich-Bezier operators, which have the Jacobi weight function are given by the equivalence theorem between the K-functional and modulus of smoothness in Orlicz spaces.
作者 韩领兄 吴嘎日迪 HAN Lingxiong;WU Garidi(Mathematics College,Inner Mongolia University for Nationalities,Tongliao,Inner Mongolia,028043,P.R.China;School of Mathematical Sciences,Inner Mongolia Normal University,Hohhot,Inner Mongolia,010021,P.R.China)
出处 《数学进展》 CSCD 北大核心 2018年第5期719-734,共16页 Advances in Mathematics(China)
基金 partially supported by NSFC(No.11461052)
关键词 ORLICZ空间 Jacobi权函数 Szász-Kantorovich-Bézier算子 K-泛函 光滑模 Orlicz space Jacobi weight function Szasz-Kantorovich-Bezier operators K-functional modulus of smoothness
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部