摘要
本文研究了凸体的某些几何量在Steiner对称化作用下的变化情况.设C和D是d维欧氏空间R^d中的两个凸体,我们表明凸体关于特殊线性群SL(d)的极小表面积min{S(ΦC):Φ∈SL(d)}和混合体积V(C,D,…,D)分别在Steiner对称化作用后是不增加的.作为上述结果的应用,混合体积的Minkowski第一不等式被重新证明.
In this paper, we study some geometric quantities of convex bodies under Steiner symmetrization. Let C, D be two convex bodies in Euclidean d-space Rd. We show that the minimal surface area min{S(ΦC) : Φ∈ SL(d)} with respect to the special linear group SL(d) and mixed volume V(C, D,…, D) of convex bodies are non-decreasing under Steiner symmetrization.As a consequence, the first Minkowski's inequality of mixed volume is proved again.
作者
戴进
DAI Jin(College of Mathematics and Information Science,Shaanxi Normal University,Xi'an,Shaanxi 710119,P.R.China)
出处
《数学进展》
CSCD
北大核心
2018年第5期767-772,共6页
Advances in Mathematics(China)