期刊文献+

局部紧H半群上概率测度序列的组合收敛性 被引量:1

Composition Convergence of Probability Measure Sequences on Locally Compact H-semigroups
原文传递
导出
摘要 首先讨论可数离散H半群上组合收敛的概率测度序列的一些极限性质,证明了相关文献中关于组合收敛必要条件的一个猜想.其次当半群具有交换性时,在同分布场合建立了强Kloss准则,证明经适当的shift变换可使概率测度卷积幂序列收敛到某个不变测度.最后讨论具有紧核的局部紧H半群上的概率测度卷积序列聚点集的构造.这些结果推广和改进了一些已有的结论. In this paper, we first investigate some limit properties of composition convergence probability measure sequences on countable discrete H-semigroups, and verify a conjecture on the necessary condition for the composition convergence. Subsequently, in the case of being identically distributed, the strong Kloss convergence criterion on an Abelian semigroup is obtained: by suitably choosing shift transformation, a sequence of powers of probability measure convolution will converge to an invariant measure. Finally we discuss the structure of the accumulation point sets of a probability measure convolution sequence on a locally compact H-semigroup with compact kernel. All these results extend or improve the relevant results in literatures.
作者 严慧 徐立峰 徐侃 YAN Hui;XU Lifeng;XU Kan(School of Mathematics and Statistics,Hubei Normal University,Huangshi,Hubei,335002,P.R China)
出处 《数学进展》 CSCD 北大核心 2018年第5期791-800,共10页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11471105) 湖北省教育厅重点科研项目(Nos.D20172501 B20182202)
关键词 拓扑半群 概率测度 组合收敛 不变测度 topological semigroup probability measure composition convergence invariant measure
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部