摘要
首先讨论可数离散H半群上组合收敛的概率测度序列的一些极限性质,证明了相关文献中关于组合收敛必要条件的一个猜想.其次当半群具有交换性时,在同分布场合建立了强Kloss准则,证明经适当的shift变换可使概率测度卷积幂序列收敛到某个不变测度.最后讨论具有紧核的局部紧H半群上的概率测度卷积序列聚点集的构造.这些结果推广和改进了一些已有的结论.
In this paper, we first investigate some limit properties of composition convergence probability measure sequences on countable discrete H-semigroups, and verify a conjecture on the necessary condition for the composition convergence. Subsequently, in the case of being identically distributed, the strong Kloss convergence criterion on an Abelian semigroup is obtained: by suitably choosing shift transformation, a sequence of powers of probability measure convolution will converge to an invariant measure. Finally we discuss the structure of the accumulation point sets of a probability measure convolution sequence on a locally compact H-semigroup with compact kernel. All these results extend or improve the relevant results in literatures.
作者
严慧
徐立峰
徐侃
YAN Hui;XU Lifeng;XU Kan(School of Mathematics and Statistics,Hubei Normal University,Huangshi,Hubei,335002,P.R China)
出处
《数学进展》
CSCD
北大核心
2018年第5期791-800,共10页
Advances in Mathematics(China)
基金
国家自然科学基金(No.11471105)
湖北省教育厅重点科研项目(Nos.D20172501
B20182202)
关键词
拓扑半群
概率测度
组合收敛
不变测度
topological semigroup
probability measure
composition convergence
invariant measure