摘要
设K/F是整体函数域的素数l次循环扩张,F是有理函数域Fq(T)上的有限可分扩域.利用函数域的Conner-Hurrelbrink正合六边形与源于短正合列的正合六边形,本文在l整除与不整除基域F的理想类数的情形下,分别研究函数域K理想类群的Sylow l-子群的结构.同时,利用得到的结果,本文给出了基域F的单位为K中元素norm的若干条件.
Let K/F be a cyclic extension of prime degree l of global function fields, where F is finite separable extension of Fq(T). Using Conner and Hurrelbrink's exact hexagon for function fields and other exact hexagon from short exact sequences, we study in this paper the structure of Sylow l-subgroup of the ideal class group of K. To be clear, we consider separately the two possibilities, when l divides the ideal class number of F and when it does not. Meanwhile, we summarize in this paper several conditions that characterize when every unit of F is norm of an element of the field K.
作者
赵正俊
Zheng Jun ZHAO(School of Mathematics and Computational Science,Anqing 246133,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2018年第5期729-740,共12页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(11601009)
安徽省自然科学基金资助项目(1608085QA04)