摘要
本文在周期Triebel-Lizorkin空间Fp,q^s(T;x)上研究二阶有限时滞退化微分方程(Mu')'(t)+αu'(t)=Au(t)+Gu't+Fut+f(t)(t∈T:=[0,2π]),u(0)=u(2π),(Mu')(0)=(Mu')(2π)的适定性.利用Triebel-Lizorkin空间上算子值傅里叶乘子定理,给出上述方程是Fp,q^s-适定的充要条件.
We study the second order degenerate differential equations with finite delay: (Mu')'(t) + αu'(t) = Au(t) + Gut' + Fut + f(t) (t∈ [0,2π]) with periodic boundary conditions u(0) = u(2π), (Mu)'(0) = (Mu)'(2π) in periodic Triebel-Lizorkin spaces. Using operator-valued Fourier multipliers theorems in Triebel Lizorkin spaces Fp, q^s(T; X), we give necessary and sufficient conditions for the Fp,q^s-well-posedness of above equations.
作者
蔡钢
Gang CAI(School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2018年第5期741-750,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(11401063,11771063)
重庆市自然科学基金(cstc2017jcyjAX0006)
重庆市教委项目(KJ1703041)
重庆市高等学校青年骨干教师资助计划(020603011714)
重庆师范大学青年拔尖人才计划(02030307-00024)