摘要
基于函子有限子范畴的重要性,利用图追踪的方法,从mutation对出发,得到了一类函子有限子范畴,具体而言是,设T是一个三角范畴且带有Serre函子,D是T中的一个函子有限的刚性子范畴.如果(X,Y)是一个D-mutation对,则X是T中的函子有限子范畴当且仅当Y是T中的函子有限子范畴.
Based on functorially finite subcategories, by chasing diagram, we obtain a class of functorially finite subcafegories from mutation pairs. More precisely, let T be a triangulated category with a Serre functor and D a functorially finite rigid subcategory of T. If( X, Y) forms a D-mutation pair, then X is a functorially finite subcategory of T if and only if Y is a functorially finite subcategory of T.
作者
周潘岳
ZHOU Panyue(College of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,China)
出处
《湖南理工学院学报(自然科学版)》
CAS
2018年第3期14-17,共4页
Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金
湖南省自然科学基金资助项目(2018JJ3205)
关键词
三角范畴
函子有限子范畴
Serre函子
triangulated categories
functorially finite subcategories
Serre functor