摘要
We propose a method to improve the secret key rate of an eight-state continuous-variable quantum key distribution(CVQKD) by using a linear optics cloning machine(LOCM). In the proposed scheme, an LOCM is exploited to compensate for the imperfections of Bob's apparatus, so that the generated secret key rate of the eight-state protocol could be well enhanced. We investigate the security of our proposed protocol in a finite-size scenario so as to further approach the practical value of a secret key rate. Numeric simulation shows that the LOCM with reasonable tuning gain λ and transmittance τcan effectively improve the secret key rate of eight-state CVQKD in both an asymptotic limit and a finite-size regime.Furthermore, we obtain the tightest bound of the secure distance by taking the finite-size effect into account, which is more practical than that obtained in the asymptotic limit.
We propose a method to improve the secret key rate of an eight-state continuous-variable quantum key distribution(CVQKD) by using a linear optics cloning machine(LOCM). In the proposed scheme, an LOCM is exploited to compensate for the imperfections of Bob's apparatus, so that the generated secret key rate of the eight-state protocol could be well enhanced. We investigate the security of our proposed protocol in a finite-size scenario so as to further approach the practical value of a secret key rate. Numeric simulation shows that the LOCM with reasonable tuning gain λ and transmittance τcan effectively improve the secret key rate of eight-state CVQKD in both an asymptotic limit and a finite-size regime.Furthermore, we obtain the tightest bound of the secure distance by taking the finite-size effect into account, which is more practical than that obtained in the asymptotic limit.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.61379153 and 61572529)