摘要
In this report, the effect of temperature on the In As/Al Sb heterojunction and high-electron-mobility transistors(HEMTs) with a gate length of 2 μm are discussed comprehensively. The results indicate that device performance is greatly improved at cryogenic temperatures. It is also observed that the device performance at 90 K is significantly improved with 27% lower gate leakage current, 12% higher maximum drain current, and 22.5% higher peak transconductance compared to 300 K. The temperature dependence of mobility and the two-dimensional electron gas concentration in the In As/Al Sb heterojunction for the temperature range 90 K-300 K is also investigated. The electron mobility at 90 K(42560 cm2/V·s)is 2.5 times higher than its value at 300 K(16911 cm^2/V·s) because of the weaker lattice vibration and the impurity ionization at cryogenic temperatures, which corresponds to a reduced scattering rate and higher mobility. We also noted that the two-dimensional electron gas concentration decreases slightly from 1.99 × 10^(12) cm^(-2) at 300 K to 1.7 × 10^(12) cm^(-2) at 90 K with a decrease in temperature due to the lower ionization at cryogenic temperature and the nearly constant ?Ec.
In this report, the effect of temperature on the In As/Al Sb heterojunction and high-electron-mobility transistors(HEMTs) with a gate length of 2 μm are discussed comprehensively. The results indicate that device performance is greatly improved at cryogenic temperatures. It is also observed that the device performance at 90 K is significantly improved with 27% lower gate leakage current, 12% higher maximum drain current, and 22.5% higher peak transconductance compared to 300 K. The temperature dependence of mobility and the two-dimensional electron gas concentration in the In As/Al Sb heterojunction for the temperature range 90 K-300 K is also investigated. The electron mobility at 90 K(42560 cm2/V·s)is 2.5 times higher than its value at 300 K(16911 cm^2/V·s) because of the weaker lattice vibration and the impurity ionization at cryogenic temperatures, which corresponds to a reduced scattering rate and higher mobility. We also noted that the two-dimensional electron gas concentration decreases slightly from 1.99 × 10^(12) cm^(-2) at 300 K to 1.7 × 10^(12) cm^(-2) at 90 K with a decrease in temperature due to the lower ionization at cryogenic temperature and the nearly constant ?Ec.
作者
Jing Zhang
Hongliang Lv
Haiqiao Ni
Zhichuan Niu
Yuming Zhang
张静;吕红亮;倪海桥;牛智川;张玉明(School of Microelectronics, Xidian University and Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices;State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences)
基金
Project supported by the Advanced Research Foundation of China(Grant No.914xxx803-051xxx111)
the National Defense Advanced Research Project of China(Grant No.315xxxxx301)
the National Defense Innovation Program of China(Grant No.48xx4)