期刊文献+

Key technologies for dual high-k and dual metal gate integration

Key technologies for dual high-k and dual metal gate integration
下载PDF
导出
摘要 The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the wafer, and the synchronous etching of n/pMOS gate stack, are successfully developed. First, reasonable flat-band voltage and equivalent oxide thickness of pMOS MIPS structure are obtained by further optimizing the HfSiAlON dielectric through incorporating more Al-O dipole at interface between HfSiAlON and bottom SiOx. Then, the separating of high-k and metal gate for n/pMOS is achieved by SC1(NH4OH:H2O2:H2O = 1 : 1 : 5) and DHF-based solution for the selective removing of n MOS TaN and Hf Si ON and by BCl3-based plasma and DHF-based solution for the selective removing of pMOS TaN/Mo and HfSiAlON.After that, the synchronous etching of n/pMOS gate stack is developed by utilizing optimized BCl3/SF6/O2/Ar plasma to obtain a vertical profile for TaN and TaN/Mo and by utilizing BCl3/Ar plasma combined with DHF-based solution to achieve high selectivity to Si substrate. Finally, good electrical characteristics of CMOS devices, obtained by utilizing these new developed technologies, further confirm that they are practicable technologies for DHDMG integration. The key technologies for the dual high-k and dual metal gate, such as the electrical optimization of metal insert poly-Si stack structure, the separating of high-k and metal gate of n/pMOS in different regions of the wafer, and the synchronous etching of n/pMOS gate stack, are successfully developed. First, reasonable flat-band voltage and equivalent oxide thickness of pMOS MIPS structure are obtained by further optimizing the HfSiAlON dielectric through incorporating more Al-O dipole at interface between HfSiAlON and bottom SiOx. Then, the separating of high-k and metal gate for n/pMOS is achieved by SC1(NH4OH:H2O2:H2O = 1 : 1 : 5) and DHF-based solution for the selective removing of n MOS TaN and Hf Si ON and by BCl3-based plasma and DHF-based solution for the selective removing of pMOS TaN/Mo and HfSiAlON.After that, the synchronous etching of n/pMOS gate stack is developed by utilizing optimized BCl3/SF6/O2/Ar plasma to obtain a vertical profile for TaN and TaN/Mo and by utilizing BCl3/Ar plasma combined with DHF-based solution to achieve high selectivity to Si substrate. Finally, good electrical characteristics of CMOS devices, obtained by utilizing these new developed technologies, further confirm that they are practicable technologies for DHDMG integration.
作者 李永亮 徐秋霞 王文武 Yong-Liang Li;Qiu-Xia Xu@;and Wen-Wu Wang(Integrated Circuit Advanced Process Center,Institute of Microelectronics,Chinese Academy of Science,Beijing 100029,China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期529-534,共6页 中国物理B(英文版)
基金 Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA010601)
关键词 high-k metal gate metal insert poly-Si stack(MIPS) dual high-k and dual metal gate(DHDMG) high-k metal gate metal insert poly-Si stack(MIPS) dual high-k and dual metal gate(DHDMG)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部