摘要
We study the transport properties of a superconductor-quantum spin Hall insulator-superconductor Josephson junction both in the absence and in the presence of a DC bias voltage. As the system is predicted to host Majorana fermions at its interfaces,the Andreev bond states are supposed to exhibit a distinct 4π periodicity in the superconducting phase difference, namely the fractional Josephson effect. Using the non-equilibrium Green's function method, we calculate the current and the related current noise based on a tight-binding Hamiltonian. Our direct results show that the fractional Josephson effect can not be seen in equilibrium junctions. While in non-equilibrium junctions, this effect can be confirmed by the multiple Andreev reflections induced peaks of the non-equilibrium noise, which appear at discrete frequencies ω = ne V with n being an integer number.
We study the transport properties of a superconductor-quantum spin Hall insulator-superconductor Josephson junction both in the absence and in the presence of a DC bias voltage. As the system is predicted to host Majorana fermions at its interfaces,the Andreev bond states are supposed to exhibit a distinct 4π periodicity in the superconducting phase difference, namely the fractional Josephson effect. Using the non-equilibrium Green's function method, we calculate the current and the related current noise based on a tight-binding Hamiltonian. Our direct results show that the fractional Josephson effect can not be seen in equilibrium junctions. While in non-equilibrium junctions, this effect can be confirmed by the multiple Andreev reflections induced peaks of the non-equilibrium noise, which appear at discrete frequencies ω = ne V with n being an integer number.
基金
supported by the National Key Basic Research Program of China(Grant Nos.2015CB921102,and 2014CB920901)
the National Key R and D Program of China(Grant No.2017YFA0303301)
the National Natural Science Foundation of China(Grants Nos.11574007,11574245,11534001,and 11474085)
the Natural Science Foundation of Jiangsu Province(Grant No.BK20160007)
the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB08-4)