期刊文献+

Description of Soil Evolution in Southern Mashhad City Using Jenny's and Johnson and Watson-Stegner's Conceptual Models

Description of Soil Evolution in Southern Mashhad City Using Jenny's and Johnson and Watson-Stegner's Conceptual Models
原文传递
导出
摘要 Conceptual models are suitable for describing internal relationships of complex systems, including soil. We used conceptual models, the Jenny's and Johnson and Watson-Stegner's models to understand the formation and evolution of soil. We studied 20 pedons in granitic hilly lands, loessial piedmont, and piedmont plain in southern Mashhad, northeast Iran. These soils were characterized by high levels of gypsum, especially in the granitic saprolites, which suggested the importance of the wind in shaping the soil structure. Jenny's model is a developmental and equilibrium model, which only describes the state of the soil formation factors and considers that each bioclimatie zone has a specific climax soil. It focuses on the genesis of the surface soil and is not suitable for buried soils and paleosols. Johnson and Watson-Stegner's model describes soil as a product of progressive and regressive processes due to horizonation or haploidization. Progressive processes during the last interglacial cycle created a well-developed paleosol with an argillic horizon in all landforms, except the piedmont plain. Developmental soil up-building by aeolian addition led to gypsum enrichment of the granitic saprolite. Erosion decreased soil thickness and exposed the argillic horizon. The Last Glacial Maximum led to greater deposition of loess, covering the paleosol. Humidity was higher during the early Holocene than today, leading to the development of a Bk horizon. This horizon was preserved in the stable surfaces of granitic hilly land and in the loessial piedmont, but buried on the piedmont plain via the deposition of alluvial sediments. Jenny's model could be used for current soil formation factors, whereas Johnson and Watson-Stegner's model required morphological characteristics of pedons for interpretation. Conceptual models are suitable for describing internal relationships of complex systems, including soil. We used conceptual models,the Jenny's and Johnson and Watson-Stegner's models to understand the formation and evolution of soil. We studied 20 pedons in granitic hilly lands, loessial piedmont, and piedmont plain in southern Mashhad, northeast Iran. These soils were characterized by high levels of gypsum, especially in the granitic saprolites, which suggested the importance of the wind in shaping the soil structure.Jenny's model is a developmental and equilibrium model, which only describes the state of the soil formation factors and considers that each bioclimatic zone has a specific climax soil. It focuses on the genesis of the surface soil and is not suitable for buried soils and paleosols. Johnson and Watson-Stegner's model describes soil as a product of progressive and regressive processes due to horizonation or haploidization. Progressive processes during the last interglacial cycle created a well-developed paleosol with an argillic horizon in all landforms, except the piedmont plain. Developmental soil up-building by aeolian addition led to gypsum enrichment of the granitic saprolite. Erosion decreased soil thickness and exposed the argillic horizon. The Last Glacial Maximum led to greater deposition of loess, covering the paleosol. Humidity was higher during the early Holocene than today, leading to the development of a Bk horizon.This horizon was preserved in the stable surfaces of granitic hilly land and in the loessial piedmont, but buried on the piedmont plain via the deposition of alluvial sediments. Jenny's model could be used for current soil formation factors, whereas Johnson and Watson-Stegner's model required morphological characteristics of pedons for interpretation.
出处 《Pedosphere》 SCIE CAS CSCD 2018年第4期656-665,共10页 土壤圈(英文版)
关键词 landscape evolution LOESS progressive pedogenesis regressive pedogenesis soil formation model 土壤结构 约翰逊 模型 进化 城市 形成因素 放射性元素 花岗石
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部