期刊文献+

库区洲滩潜流带温度示踪流速计算方法 被引量:5

Calculation method of temperature tracing velocity in the hyporheic zone of the reservoir continent beach
下载PDF
导出
摘要 以澜沧江漫湾库区洲滩为研究对象,实时监测水库运行期间洲滩监测井水位和水温变化过程,依据水位和水温数据,分别用水动力学法和温度示踪法核算流速。结果表明:在计算库区水位波动引起的潜流交换上,Hatch相位法具有更高的准确性,监测时段内的潜流交换流速和交换量分别为-5.87×10^(-5)~12.92×10^(-5)m/s和2.66m^3。在计算库区与洲滩补给和排泄过程中的峰值流速时,Hatch相位法的计算结果均较水动力学法滞后。在空间上,洲滩深度越深,流速越小,不同深度流速曲线规律基本一致。 Taking the Manwan Reservoir continent beach of Lancang River as the research object,during reservoir operation,water level and temperature was real-time monitored. The infiltration flow velocity was calculated by hydrodynamic method and temperature tracer method according to the data of water level and temperature. The results show that the Hatch phase method has higher accuracy in calculating the subsurface flow exchange caused by the water level fluctuations in the reservoir area,the flow exchange velocity ranged from -5. 87 × 10(-5) m/s to 12. 92 × 10(-5) m/s,and the hyporheic exchange volume is 2. 66 m3 during the monitoring period. The results of Hatch phase method lagged behind hydrodynamic method when calculating peak flow velocities. The velocities decreased with the increase of the depth in island,and the curves of flow velocities at different depths are similar.
作者 姬雨雨 施文卿 陈求稳 安磊 JI Yuyu;SHI Wenqing;CHEN Qiuwen;AN Lei(College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China;Nanjing Hydraulic Reasearch Institute,Nanjing 210024,China)
出处 《水资源与水工程学报》 CSCD 2018年第3期159-163,共5页 Journal of Water Resources and Water Engineering
基金 富营养化湖库水生态修复创新团队项目(Y917020) 中国博士后科学基金项目(2017M611861)
关键词 水库运行 库区洲滩 潜流带 水动力学 温度示踪 流速 reservoir operation reservoir continent beach phreatic zone hydrodynamic temperature tracing flow velocity
  • 相关文献

参考文献5

二级参考文献82

  • 1胡勘平.松花江水污染生态环境影响评估取得阶段性成果[J].环境保护,2006,34(02A):1-1. 被引量:1
  • 2Jonsson. Effect of hyporheic exchange on conservative and reactive solute transport in streams, www. diva - portal.org/diva/getI)ocument? umnbn-se-uu-diva - 3522 - 1--fulllext. pdf, 2003.
  • 3Packman A I, Marion A, Zaramella M, et al. Development of layered sediment structure and its effects on pore water transport and hyporheic exchange[J]. Water, Air, & Soil Pollution: Focus, 20(0, 12(6): 69- 78.
  • 4Boulton A J, Findlay S, Mannonier P, et al. The functional significance of the hyporheic zone in streams and rlvers[J]. Annual Review of Ecology and Systematics, 1998, 29:59 - 81.
  • 5Triska F J, Kennedy V C, Avanzino R J, et al. Retention and transport of nutrients in a third-order stream in northwestern California: hyporheic processes[J]. Ecology, 1989, 70:1 894- 1905.
  • 6Runkel R L, McKnight D M, Rajaram H. Modeling hyporheic zone processes [J]. Advances in Water Resources, 2003, 26(9) : 901 - 905.
  • 7Patschke S N. Hyporheic exchange in a forested headwater stream[D]. Canada: Simon Fraser University, 1999.
  • 8Precht E, Franke U, Polerecky L, et al. Oxygen dynamics in permeable sediments with wave-driven pore water exchange[J]. Limnology and Oceanography, 2004, 49(3): 693-705.
  • 9Huettel M, Roy H, Precht E, et al. Hydrodynamical impact of biogeochemical processes in aquatic sediments[J]. Hydrobiologia, 2003, 494 : 231 - 236.
  • 10Packman A I, Brooks N H. Hyporheic exchange of solutes and colloids with moving bedforms[ J]. Water Resources Research, 2001,37(10) : 2591 - 2605.

共引文献82

同被引文献77

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部