摘要
深海扬矿系统周围海流和内部提升矿浆的流动会对输流软管产生流-固耦合作用力,建立包括输流软管、内部矿浆和外部海流在内的三维流-固耦合模型,分析在内、外部流体共同作用下输流软管的空间变形及软管中的应力分布。研究表明:输流软管的最大横向位移随着内流速度和密度的增大而减小;最大主应力随着内流速度的增大,先减小后增大,随着内流密度的增大而增大;输流软管的最大横向位移和最大主应力随着外流速度的增大而增大。为了保证输流软管在工作中有着相对稳定的构型,确保深海采矿系统能够安全高效地运行,输流软管中内流速度和密度都应保持在合理的变化范围,并且输流软管更适合在海流速度低于0.3 m/s的海洋环境中工作。
The flow of sea currents and the internal lift slurry around the deep ocean lifting system will produce fluid-structure interaction force on the flexible hose,and the 3 D fluid-structure interaction model of the flexible hose with the internal slurry and external fluid was established. The spatial deformation and stress distribution characteristics of the flexible hose under the influence of internal and external fluid were analyzed. The results show that the maximum horizontal displacement of flexible hose decreases with the increase of internal fluid velocity and density,the maximum principal stress of flexible hose first decreases and then increases with the increase of internal fluid velocity,the maximum principal stress of flexible hose increase with the increase of internal fluid density,and the maximum horizontal displacement and principal stress of flexible hose increase with the increase of external fluid velocity. In order to ensure the spatial configuration of flexible hose during operation and the safety and efficiency of deep-ocean mining system,the internal fluid velocity and density should be kept within a reasonable range. The flexible hose should work with the external fluid velocity less than 0. 3 m/s.
作者
李艳
成赟
郭轶可
刘少军
LI Yan;CHENG Yun;GUO Yike;LIU Shaojun(College of Mechanical and Electrical Engineering,Central South University,Changsha 410083,China;State Key Laboratory of Exploitation and Utilization of Deep Sea Mineral Resources,Changsha 410012,China)
出处
《水资源与水工程学报》
CSCD
2018年第3期182-187,193,共7页
Journal of Water Resources and Water Engineering
基金
国家自然科学基金项目(51674286)
国家重点研发计划项目(2016YFC0304101)
湖南省科技重大专项(2014FJ1002)
关键词
输流软管
流-固耦合
空间变形
应力分布
内外流共同作用
深海扬矿系统
flexible hose
fluid - structure interaction
spatial deformation
stress distribution
influence of internal and external
deep - ocean lifting system