期刊文献+

Steenrod代数上同调中的一个非平凡乘积元(英文)

A Nontrivial Product in the Cohomology of the Steenrod Algebra
原文传递
导出
摘要 设p是奇素数,A是Steenrod代数.首先对扩张群进行了简单介绍,进而证明了Adams谱序列中乘积元hs0b0β_(s+2)∈Ext_A^(S+5),*A(Z/p,Z/p)的非平凡性,其中p≥7,0≤s<p-3,β是第2周期元. Let p be an odd prime and A be the Steenord algebra. The extension groups is introduced firstly and then the product hs0b0βs+2∈ExtA^S+5,*(Z/p,Z/p) is proved to be nontrivial, where p ≥7,0 ≤s p-3,β is the second periodic element.
作者 王冲 Wang Chong(School of Mathematics and Statistics,Cangzhou Normal University,Cangzhou 061001,China;School of Information,Renmin University of China,Beijing 100872,China)
出处 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期44-48,共5页 Acta Scientiarum Naturalium Universitatis Nankaiensis
基金 Supported by Cangzhou Municipal Science and Technology Bureau Natural Science Foundation Project(177000002)
关键词 ADAMS谱序列 MAY谱序列 上同调 Adams spectral sequence May spectral sequence cohomology
  • 相关文献

参考文献1

二级参考文献10

  • 1Cohen, Ralph L.: Odd primary families in stable homotopy theory. Mere. Amer. Math. Soc., 242, 1-92(1981)
  • 2Liulevicius, A.: The factorizations of cyclic reduced powers by secondary cohomology operations. Mere.Amer. Math. Soc., 42, 1-112 (1962)
  • 3Lin, J. K.: A new family of filtration three in the stable homotopy of spheres. Hiroshima Math. J., 31(3),477-492 (2001)
  • 4Ravenel, D. C.: Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, Orlando,1986
  • 5Wang, X., Zheng, Q.: The convergence of αs^(n) hohk. Sci. China Set. A, 41(6), 622-628 (1998)
  • 6Cohen, Ralph L., Goerss, P.: Secondary cohomology operations that detect homotopy classes. Topology,23, 177-194 (1984)
  • 7Oka, S.: Multilicative structure of finite ring spectra and stable homotopy of spheres. Algebraic Topology (Aarhus), Lecture Notes in Math., Springer-Verlag, 1051, 418-441, 1984
  • 8Zhou, X. G.: Higher cohomology operations that detect homotopy classes, Lecture Notes in Math., Springer-Verlag, 1370, 416-436, 1989
  • 9Toda, H.: Algebra of stable homotopy of Zp-spaces and applications. J. Math. Kyoto Univ., 11, 197-251(1971)
  • 10Toda, H.: On spectra realizing exterior parts of the Steenrod algebra. Topology, 10, 55-65 (1971)

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部