摘要
设p是奇素数,A是Steenrod代数.首先对扩张群进行了简单介绍,进而证明了Adams谱序列中乘积元hs0b0β_(s+2)∈Ext_A^(S+5),*A(Z/p,Z/p)的非平凡性,其中p≥7,0≤s<p-3,β是第2周期元.
Let p be an odd prime and A be the Steenord algebra. The extension groups is introduced firstly and then the product hs0b0βs+2∈ExtA^S+5,*(Z/p,Z/p) is proved to be nontrivial, where p ≥7,0 ≤s p-3,β is the second periodic element.
作者
王冲
Wang Chong(School of Mathematics and Statistics,Cangzhou Normal University,Cangzhou 061001,China;School of Information,Renmin University of China,Beijing 100872,China)
出处
《南开大学学报(自然科学版)》
CAS
CSCD
北大核心
2018年第4期44-48,共5页
Acta Scientiarum Naturalium Universitatis Nankaiensis
基金
Supported by Cangzhou Municipal Science and Technology Bureau Natural Science Foundation Project(177000002)