期刊文献+

基于CEEMD-SVD-LSSVM的矿浆管线核心设备故障诊断 被引量:2

Fault diagnosis of core equipment of slurry pipeline based on CEEMD-SVD-LSSVM
下载PDF
导出
摘要 针对单向阀振动信号包含背景噪声、故障特征提取困难和诊断准确率不高的问题,提出互补集合经验模态分解(CEEMD)、奇异值分解(SVD)和最小二乘支持向量机(LSSVM)相结合的故障诊断方法.首先,用CEEMD分解单向阀振动信号,并用能量分析法及互相关分析法来选取有用的本征模态函数(IMF).然后,根据SVD法提取相应的故障特征,并输入LSSVM进行故障诊断.通过与集合经验模态分解(EEMD)、支持向量机(SVM)等的比较,表明该方法不仅消除了模态混叠和信号噪声,而且能有效地提取单向阀的故障特征,得到更高的诊断准确率. In view of the problem that the vibration signal of check valve contains background noise,fault feature extraction is difficult and the diagnostic accuracy is not high,a fault diagnosis method combining complementary ensemble empirical modal decomposition (CEEMD),singular value decomposition (SVD) and least squares support vector machine (LSSVM) is proposed.Firstly,the vibration signals of check valve are decomposed by CEEMD method,and the useful intrinsic mode functions (IMF) are obtained by energy analysis method and cross correlation analysis method.Then,the corresponding fault features are extracted according to the SVD method and input into the LSSVM for fault diagnosis.Compared with the ensemble empirical modal decomposition (EEMD) and support vector machines (SVM),this method can not only eliminate the modal aliasing and reduce the background noise,but also can effectively obtain the fault characteristics of the check valve,and finally get a higher diagnostic accuracy rate.
作者 周成江 吴建德 杨静宗 ZHOU Cheng-jiang;WU Jian-de;YANG Jing-zong(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Engineering Research Center for Mineral Pipeline Transportation of Yunnan Province,Kunming 650500,China)
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第5期886-896,共11页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(61563024 51169007 61663017)
关键词 单向阀 互补集合经验模态分解 奇异值分解 最小二乘支持向量机 故障诊断 check valve complementary ensemble empirical modal decomposition singular value decompo-sition leoust squares mupport vector machine fault diagnosis
  • 相关文献

参考文献20

二级参考文献209

共引文献341

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部