摘要
基于大数据理论,采用数据挖掘的聚类分析方法,对南京市地铁1号线各站环控能耗的逐时数据进行了聚类分析,利用SQL Server 2012软件对平均化后的车站环控逐日能耗数据进行分析处理,得到用能特性不同的5类车站。对第Ⅰ类车站空调季(5—10月)的逐时、逐日、逐月环控能耗进行了数据拟合与分析,建立了车站典型日逐时能耗的标准能耗模型,提出了用于能耗预测的峰值环控能耗系数概念,实现了各类车站的能耗预测。
Based on the theory of big data, carries out a cluster analysis on the environmental control energy consumption data of each station of underground railway Line 1 in Nanjing city using the cluster analysis method of data mining, analyses the average daily energy consumption data of the stations with SQL Server 2012 software, and obtains five types of stations based on different energy characteristics. Carries out the data fitting and analysis of the hourly, daily and monthly energy consumption in the air conditioning season (May to October) for I-type station. Establishes the standard energy consumption models for the typical day hourly energy consumption. Puts forward a concept of coefficient of peak environmental control energy consumption. Realizes the energy consumption forecast of all kinds of stations.
作者
朱培根
丁茹
陈琦
韦炜致
Zhu Peigen;Ding Ru;Chen QI;Wei Weizhi(PLA Army Engineering University,Nanjing,China)
出处
《暖通空调》
2018年第9期80-84,共5页
Heating Ventilating & Air Conditioning
关键词
环控能耗
地铁
数据挖掘
聚类分析方法
能耗分析
峰值环控能耗系数
environmental control energy consumption
underground railway
data mining
clusteranalysis method
energy consumption analysis
coefficient of peak environmental control energyconsumption