摘要
基于抽象区域的图像检索(RBIR)对于查询相关图像是有效的,它将构成智能视频监控的基础,其中感兴趣区域(ROI)的特征是实时提取的。对基于经典聚类方法的现有图像分割技术进行综述,包括一种新颖的矩形分割(CSeg)技术,该技术生成近似的矩形图像片段。CSeg具有最小可能的线性顺序运行时间,在性能方面,使用近似段的RBIR在统计上类似于那些使用不适于实时应用的精确分割算法的RBIR。
Region-based image retrieval (RBIR) has been proven to be effective in finding relevant images. It will form the basis for intelligent video surveillance where features of regions-of-interest (ROI) is extracted in real-time. This paper presents a review on existing image segmentation techniques based on the classical clustering approaches, including a novel Cuboid Segmentation (CSeg) technique that results in approximated rectangular image segments. CSeg is fast with minimum possible linear order running time and performance of RBIR using the approximated segments is statistically similar to RBIR using accurate segments from segmentation techniques that are infeasible for real applications.
作者
穆尔希德
MURSHED Manzur(Faculty of Science and Technology,Federation University Australia,Churchill Vic 3842,Australi)
出处
《西安邮电大学学报》
2018年第4期1-7,共7页
Journal of Xi’an University of Posts and Telecommunications
基金
Australian Research Council Discovery Project(DP130103670)
关键词
分层聚类
矩形分割
图像/视频分析
图像/视频压缩
hierarchical clustering
cuboid segmentation
image/video analysis
image/video compression