期刊文献+

基于超限学习机的应急物资分级研究 被引量:4

Study on Classification of Emergency Material Based on Extreme Learning Machine
下载PDF
导出
摘要 针对如何将应急物资进行合理分级,用以提高应急物资的调度安排和运输效率,采用了超限学习机算法对应急物资进行分级研究,建立了应急物资分级评价体系,通过对评价指标的学习与训练,得到应急物资分级结果,并与专家分级结果进行对比,计算分级准确率。实验结果表明,该算法能够有效地对应急物资进行分级,具有较高的准确性和较好的可行性。 Aiming at that how to properly classify emergency supplies and improve the scheduling and transportation efficiency of emergency supplies,an over-limit learning machine algorithm was used to classify emergency supplies,and a rating system for emergency supplies was established to evaluate evaluation indicators through learning and training. The results of the grade of emergency supplies were obtained and compared with the expert 's rating results to calculate their classification accuracy.Experimental results show that the algorithm can effectively classify emergency supplies with high accuracy and good feasibility.
作者 许成瑞 冯云 汪贻生 XU Chengrui;FENG Yun;WANG Yisheng(Department of Military Logistics,Army Logistics University of PLA,Chongqing 401331,China)
出处 《兵器装备工程学报》 CAS 北大核心 2018年第9期125-129,共5页 Journal of Ordnance Equipment Engineering
基金 陆军勤务学院学术创新项目(201103) 中国物流学会 中国物流与采购联合会研究课题计划资助项目(2018CSLKT3-119)
关键词 超限学习机 应急物资 多分类问题 extreme learning machine emergency material multi-class problem
  • 相关文献

参考文献7

二级参考文献47

共引文献96

同被引文献28

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部