期刊文献+

基于物联网大数据技术的智慧公路研究 被引量:6

Research on intelligent highway based on big data technology of Internet of things
下载PDF
导出
摘要 针对当前智慧公路研究方法未对公路数据进行归一化处理,导致智慧交通诱导时间较长、运行故障率较高的问题,提出基于物联网大数据技术的智慧公路研究方法。首先,对智慧公路交通信息感知进行分析,构建交通系统感知网络,完成智慧公路交通数据的采集;其次,对交通大数据进行归一化处理,保障交通状况预测的准确性;最后,结合得到的数据处理结果,从智慧运营和智慧养护两方面入手,构建基于物联网的智慧公路交通体系,完成智慧公路研究。实验结果表明,所提方法的智慧公路交通流预测值接近实际值,交通诱导时间平均在5min左右,远低于传统方法,公路运行故障率控制在10%以下,可有效保障智慧公路的顺利运行。 The current intelligent highway research method does not normalize the highway data, leads to the long time of the intelligent traffic induction and the high running failure rate. Aiming at above problem, it proposes a smart highway research method based on the large data technology of the Internet of things. It analyzes the perception of intelligent road traffic information, constructs the traffic system perception network, and completes the collection of large data of the intelligent road traffic. Then it normalizes the large traffic data to ensure the accuracy of the traffic condition prediction, combines the data processing results with the wisdom operation and wisdom, builds the intelligent highway transportation system based on the Internet of things. The experimental results show that the predicted value of the proposed method is close to the actual value, the average time of the traffic induction is about 5min, which is far lower than the traditional method. The failure rate of the highway operation can be controlled below 10%, which can effectively guarantee the smooth operation of the intelligent highway.
作者 张鹏 Zhang Peng(Zhengzhou City Highway Engineering Co.,Henan Zhengzhou,450001,China)
出处 《机械设计与制造工程》 2018年第9期91-94,共4页 Machine Design and Manufacturing Engineering
关键词 物联网 大数据 智慧公路 交通诱导 Internet of things big data intelligent highway traffic guidance
  • 相关文献

参考文献11

二级参考文献82

  • 1潘复兰.古建筑防工业振动的研究[J].文物保护与考古科学,2008,20(S1):104-108. 被引量:21
  • 2于晨昀.张呼客运专线隧道下穿长城烽火台遗址容许振动速度研究[J].铁道标准设计,2012,32(S1):39-42. 被引量:8
  • 3吴功宜,吴英.物联网工程导论[M].北京:机械工业出版社,2012.
  • 4齐观德,潘纲,李万坚等.当出租车轨迹挖掘遇见智能交通[J].中国计算机学会通讯,2013,9(8):30-36.
  • 5PAN G,QI G,ZHANG W,et al.Trace analysis and mining for smart cities:issues,methods,and applications[J].IEEE Communications Magazine,2013,51(6):120-126.
  • 6CASTRO P S,ZANG D,CHEN C,et al.From taxi GPS traces to social and community dynamics:A survey[J].ACM Computing Surveys,2013,46(2):17-30.
  • 7WEN H,HU Z,GUO J,et al.Operational analysis on Beijing Road network during the Olympic Games[J].J Trans Sys Eng Info Tech,2008,8(6):32-37.
  • 8CASTRO P S,ZHANG D,LI S.Urban traffic modelling and prediction using large scale taxi GPS traces[C]// Proceedings of the 10th International Conference on Pervasive Computing.Berlin:Springer,2012:57-72.
  • 9GIANNOTTI F,NANNI M,PEDRESCHI D,et al.Unveiling the complexity of human mobility by querying and mining massive trajectory data[J].VLDB J,2011,20(5):695-719.
  • 10LIU S,LIU Y,LIONEL N,et al.Detecting crowdedness spot in city transportation[J].IEEE Transactions on Vehicular Technology,2013,62(4):1527-1539.

共引文献134

同被引文献30

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部