摘要
分析了多实例学习(MIL)在复杂数据目标(图像,基因)等方面的广泛应用,针对大多数已存在的MIL算法仅能处理小样本或中等规模样本的问题,为了处理MIL中的大规模问题,提出了一种高效可扩展的MIL集成学习算法——B2VMI(Bag to Vector Multi-instance)。该集成学习算法利用低计算成本的映射方法,将传统的MIL包映射成新的特征向量表示,以此方式获得包级信息。在多个多实例数据集上的实验表明,B2VMI具有可扩展等优秀性能,该算法不仅能够取得同当前先进的MIL集成学习算法可比较的精确度,而且具有比其他MIL集成学习算法快5倍的效率。
Multi-instance Learning (MIL) has been widely used in a variety of applications, such as com- plex data objects (image, genes, etc. ). However,most existing MIL algorithms can only handle small sam- ples or medium-sized samples. To deal with the large-scale MIL problem, it provided an efficient and ex- tensible MIL ensemble learning algorithm B2VMI (Bag to vector muhi-instance) in this paper. The ensem- ble learning algorithm uses the low-cost calculation method to map the traditional MIL bag into a new eig- envector representation to obtain the bag level information in this way. Experiments on muhiple muhi-in- stance datasets showed that B2VMI has excellent performance such as scalability. This algorithm can not only achieve the same accuracy as the culwent advanced MIL ensemble learning algorithms, but also the efficiency of the algorithm is faster than other MIL ensemble learning algorithms 5 times.
作者
侯勇
张自军
郭有强
HOU Yong;ZHANG Zi-jun;GUO You-qiang(School of Computer Engineering, Bengbu University, Bengbu,233030, Anhu)
出处
《蚌埠学院学报》
2018年第5期42-49,共8页
Journal of Bengbu University
基金
蚌埠学院科学研究重点项目(2017ZR02zd)
蚌埠学院质量工程项目(2017GHJC8)
安徽省优秀人才培养项目(GXYQ2018107)
关键词
多实例学习
集成学习
包级信息
映射
特征向量
Multi-instance Learning
ensemble learning
bag-level information
mapping
eigenvector