摘要
运用李群分析对变系数五阶色散方程求出李点对称,对变系数的存在性进行讨论,可以得到不同的向量场.进一步约化成常微分方程,利用指数展开法、e-(x)展开法和幂级数展开法求出变系数五阶色散方程的精确解.最后,给出变系数五阶色散方程的守恒律.
We study the variable coefficient fifth-order dispersive equation by using Lie group analysis method. Using the classical Lie symmetry method, all vector fields and symmetry reduction of the equation with nonlinearity are constructed, and then, the exact solutions is provided by using traveling wave transformation, exponential expansion method, e -?(x) expansion method and power series expansion method. Finally, we give the conservation laws of the variable coefficient fifth-order dispersive equation.
作者
李志强
孙世飞
刘汉泽
LI Zhi-qiang;SUN Shi-fei;LIU Han-ze(School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China)
出处
《烟台大学学报(自然科学与工程版)》
CAS
2018年第4期288-293,共6页
Journal of Yantai University(Natural Science and Engineering Edition)
基金
国家自然科学基金资助项目(11171041)
关键词
李群分析
变系数五阶色散方程
精确解
守恒律
Lie symmetry analysis
the variable coefficient fifth-order dispersive equation
exact solution
conservation law