期刊文献+

Logarithm-transform piecewise linearization method for the optimization of fasoline blending processes

Logarithm-transform piecewise linearization method for the optimization of fasoline blending processes
下载PDF
导出
摘要 Gasoline blending is a key process in a petroleum refinery, as it can yield 60%–70% of a typical refinery's total revenue. This process not only exhibits non-convex nonlinear blending behavior due to the complicated blend mechanism of various component feedstocks with different quality properties, but also involves global optimum searching among numerous blending recipes. Since blend products are required to meet a series of quality requirements and highly-sensitive to the proportion changes of blending feedstocks, global optimization methods for NLP problems are often difficult to be applied because of heavy computational burdens. Thus, piecewise linearization methods are naturally proposed to provide an approximate global optimum solution by adding binary variables into the models and converting the original NLP problems into MILP ones. In this paper, Logarithmtransform piecewise linearization(LTPL) method, an improved piecewise linearization, is proposed. In this method a logarithm transform is applied to convert multi-variable multi-degree constraints into a series of single-variable constraints. As a result, the number of 0–1 variables is greatly reduced. In the final part of this paper, an industrial case study is conducted to demonstrate the effectiveness of LTPL method. In principle, this method would be useful for blending problems with complicated empirical or theoretical models. Gasoline blending is a key process in a petroleum refinery, as it can yield 60%–70% of a typical refinery's total revenue. This process not only exhibits non-convex nonlinear blending behavior due to the complicated blend mechanism of various component feedstocks with different quality properties, but also involves global optimum searching among numerous blending recipes. Since blend products are required to meet a series of quality requirements and highly-sensitive to the proportion changes of blending feedstocks, global optimization methods for NLP problems are often difficult to be applied because of heavy computational burdens. Thus, piecewise linearization methods are naturally proposed to provide an approximate global optimum solution by adding binary variables into the models and converting the original NLP problems into MILP ones. In this paper, Logarithmtransform piecewise linearization(LTPL) method, an improved piecewise linearization, is proposed. In this method a logarithm transform is applied to convert multi-variable multi-degree constraints into a series of single-variable constraints. As a result, the number of 0–1 variables is greatly reduced. In the final part of this paper, an industrial case study is conducted to demonstrate the effectiveness of LTPL method. In principle, this method would be useful for blending problems with complicated empirical or theoretical models.
作者 Yu Li Tong Qiu
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第8期1684-1691,共8页 中国化学工程学报(英文版)
基金 Supported by the National Basic Research Program of China(2012CB720500) the National Natural Science Foundation of China(U1462206)
关键词 Piecewise linearization BLENDING Non-convex Global optimization 混合过程 对数变换 优化 混合机制 MILP 混合问题 精炼厂 NLP
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部